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Discriminating brain activated  
area and predicting the stimuli performed 

using artificial neural network

In this work, a Multilayer Perceptron implementation – MLP 
using functional Magnetic Resonance Imaging (fMRI) is used 
to infer stimuli performed. Sets of images of brain activation 
were generated by visual, auditory and finger tapping para-
digms in 54 healthy volunteers. These images were used for 
training the MLP network in a leave-one-out manner in order 
to predict the paradigm that a subject performed by using 
other images, so far unseen by the MLP network. The aim in 
this paper is the exploring of the influence of the number of the 
Principal Component (PC) on the performance of the MLP in 
classifying fMRI paradigms. The classifier’s performance was 
evaluated in terms of the Sensitivity and Specificity, Prediction 
Accuracy and the area Az under the receiver operating charac-
teristics (ROC) curve. From the ROC analysis, values of Az up 
to 1 were obtained with 60 PCs in discriminating the visual 
paradigm from the auditory paradigm. 

Key words: Activation. Classifier. FMRI.  
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1 Introduction

Functional magnetic resonance imaging 

(fMRI) is a non-invasive imaging technique that 

can be effectively used to map different sensor, 

motor and cognitive functions to specific re-

gions in the brain. It provides an open window 

onto the brain at work, exposing a relevant in-

sight to the neural basis of the brain processes 

(HARDOON, 2005). By recording changes in 

cerebral blood flow, as a subject performs a men-

tal task, fMRI shows which brain regions acti-

vate when a subject makes movements, hears or 

smells something, sees someone, thinks and so 

forth (HARDOON, 2005). The fMRI neuroim-

aging is considered by several researchers as a 

datum extremely rich in signal information and 

poorly characterized in terms of signal and noise 

structure (ROBINSON, 2004). Over the last few 

decades, fMRI developments and researches had 

got advances in interrelated fields such as machine 

learning, data mining, and statistics in order to 

enhance its capabilities to extract and character-

ize subtle features in data sets from a wide variety 

of scientific fields (ROBINSON, 2004). Among 

these developments, Artificial Neural Network 

(ANN), a sort of machine learning implementa-

tion, has been applied to a broad range of fMRI 

problems. One problem is: the stimulus inference 

based upon neuroimaging.  

The aim in this work is to investigate the 

problem of inferring the neural stimulus performed 

by subjects using images of activation maps (con-

verted into features vectors) that show patterns of 

brain activation induced by visual, auditory and 

finger tapping (left and right) paradigms. By using 

these images, a feedforward Multilayer Perceptron 

implementation (MLP) was trained to predict 

paradigm from other images so far unseen by the 

MLP network.

2  Functional magnetic 
resonance imaging

2.1 The BOLD effect
The fundamental physics used by the fMRI 

technique to produce functional and structural 

cerebral images is the contrast provided by the 

changes of the magnetic properties of the two 

states of hemoglobin: deoxyhemoglobin, the re-

sulting molecule when some oxygen atoms are 

removed from the hemoglobin and oxyhemoglo-

bin, Hemoglobin molecules fully saturated with 

oxygen (AMARO; BARKER, 2006; NAGY et 

al., 2007). The first one is paramagnetic, so it 

is able to be attracted by a magnetic field. The 

second one is diamagnetic, namely, is slightly 

repelled by a magnetic field and does not retain 

the magnetic properties once the external field 

is removed (GIACOMANTONE, 2005; ERCC, 

2007). One example of contrast imaging is the 

Blood Oxygen Level Dependent effect which 

the acroname is BOLD, in which the presence 

of oxyhemoglobin in a tissue produces a differ-

ence of susceptibility between the tissue and the 

neighboring area, that is, regions with high con-

centrations of oxyhemoglobin (tissue) provide 

brighter image than regions with low concentra-

tion – neighboring area (AMARO; BARKER, 

2006). The temporal evolution of the BOLD ef-

fect is shown in Figure 1.
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Figure 1: Hemodynamic response function from a 
hypothetical stimulus
Source: The authors.



Artigos

313Exacta, São Paulo, v. 5, n. 2, p. 311-320, jul./dez. 2007.

2.2 Paradigm in fMRI
According to Amaro, E. and Barker, G. J. 

(2006), paradigm in fMRI is the construction, 

temporal organization structure and behavioral 

predictions of cognitive tasks made by a subject 

during an fMRI experiment. Typical examples of 

fMRI paradigms are: visual, auditory and finger 

tapping paradigms.

2.3 fMRI scan
An fMRI scan measures the BOLD response 

at all the points in a three dimensional image or 

voxels (volume elements). A simple fMRI scan 

is able to collect three dimensional brain im-

ages (BOLD images) of the whole brain with ap-

proximately 10,000 to 15,000 voxels every 1-3s 

(MITCHELL et al., 2004; AMARO; BARKER, 

2006). These BOLD images are a result of series 

of cognitive tasks (paradigm) performed inside the 

scanner by a subject (AMARO; BARKER, 2006). 

They show brightness levels changes of certain ce-

rebral areas, proportional to the underlining ac-

tivities, associated to the BOLD effect. The area in 

which the brightness changes in response to a spe-

cific paradigm made can be identified using sta-

tistical analyses or pattern recognition techniques 

(AMARO; BARKER, 2006).

3 Pattern classification

Here, we summarize only the relevant con-

cepts for MLP-based classification that are es-

sential for describing its application to fMRI. 

A full MLP description can be found in Haikin 

(1999). A MLP is a kind of Artificial Neural 

Network (ANN), assembled with a group of 

processing units (neurons) that are intercon-

nected with varying synaptic weights. MLPs 

can be applied to a lot of areas within biology 

and neuroscience (HAYKIN, 1999; PETERS et 

al., 2001), including fMRI data (MCKEOWN, 

1998; MISAKI; MIYAUCHI, 2006). The popu-

larity of MLP is primarily a result of its appar-

ent ability of taking decisions and making con-

clusions when it deals with complex problems, 

defined in “noisy environment”, or when the 

information used in the learning process are not 

enough to conduct the training or when the net-

work has to adapt its behavior due to the nature 

of information used in the training (HAYKIN, 

1999). In neuroimaging, MLP has been applied 

in data classification and pattern recognition to 

facilitate the diagnosis of pathological anoma-

lies (diseases) and investigate functional activi-

ties of the brain. 

3.1 MLP Architecture
The type of MLP we have used in our studies 

consists of a three-layered unit. They have neu-

rons with adjustable synaptic weights and bias. 

The first and the third are the input and output 

layers, respectively. Between them there is a lay-

er of hidden neurons. Each input neuron is con-

nected to each hidden neuron by synaptic weights. 

Similarly, each hidden neuron is connected to each 

output ones by another group of synaptic weights 

(PETERS et al., 2001). 

Figure 2 shows a representative model of a 

MLP neural network. In this figure one can iden-

tify the following elements (HAYKIN, 1999):

• A set of synaptic weights connections: a sig-

nal xj in input synapse j, connected to the 

neuron k, is multiplied by the weight synapse 

wkj;
• Input signals, weighted by the correspon-

dently synaptic weights, are summed with 

other input signals on a linear combination 

fashion;

• An activation function that limits the ampli-

tude of output signal. The activation func-
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tion, ϕ(.), defines the output neuron in terms 

of active signal level in its input and provide 

a nonlinear characteristic to the MLP. An 

example of activation function is (HAYKIN, 

1999): 

ϕ(n) = 1
1 + ean

The network output is the value of activa-

tion function for n linear combination summing 

of the input level. It can also present an external 

threshold θk, that is, an offset from the normal 

output.

From figure 2,

uk = 
p

∑
j = 1

 wkjxj

and
yk = ϕ(uk - θk)

in which the sequences 

x1, x2, …, xp and wk1, wk2, …, wkp 

are the input signals and synaptic weights, respec-

tively. 

3.2 Training method
The training of an ANN consists of carry-

ing out the input layer with cases examples of 

the problem at hand. The problem is solved by 

training the network with these cases examples, 

because, as the network manipulates different 

situation of the problem, it learns how to decide 

toward them. 

The training applied to an ANN (HAYKIN, 

1999) can be supervised. The training is realized 

as a set of cases examples put in the input lay-

er, the correspondently output is compared to a 

threshold of acceptance. If the output is as good 

as desired, then, a backpropagation procedure is 

done (HAYKIN, 1999), namely, the updating pro-

cedure begins in the output layer and goes back 

toward the input layer. The training comes to an 

end when the network output values, compared 

to the threshold, are acceptable. A good example 

of ANN normally trained with the backpropaga-

tion procedure in a supervised manner is the MLP 

neural network.

4 Experimental results 

4.1 Database description
In order to generate the database used in 

this study, a typical fMRI experiment that pro-

vides three-dimensional images related to the hu-

man subject’s brain activity was conducted in the 

Radiology Institute (InRAD) of the Faculdade de 

Medicina da Universidade de São Paulo (FMUSP), 

in São Paulo, Brazil. In this experiment, carried 

out by Maria da Graça Moraes Martin, MD PHD, 

fifty-four healthy volunteers participated in a block 

designed fMRI that generated sets of images that 

show patterns of brain activation induced by vi-

sual, auditory and finger tapping (left and right) 

paradigms. The images were acquired using BOLD 

imaging technique on a clinical GE Sigma LX 1,5T 
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Figure 2: MPL neural network model
Source: The authors.
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(Milkwalkee, USA) with fast acquisition gradient 

echo-planar image (EPI) sequence. BOLD imag-

ing used 24 slices thickness/gap = 5/0.5mm from 

the cerebral cortex to the vertex, oriented accord-

ing to the AC-PC line, BOLD sequence, TR/TE = 

2000/0.4 ms, FOV = 24 mm and FA = 90 degree.

After acquiring all the images, the result 

database included a total of 216 cases examples 

(54 cases per paradigm), with a feature vector of 

length 19968 (number of brain regions). These 

cases examples were extracted from 54 images 

with resolution 64x64x25 pixel, exposing dis-

tinct activation maps obtained using the XBAM 

software (BRAMMER, M.J.; BULLMORE, 

E.T.; SIMMONS, A. et al., 1997), applying the 

general linear model and wavelet permutation 

approaches.

4.2 Stimuli and paradigms
All paradigms were conducted following a 

cyclic block design fashion (condition 1, condition 

2, alternating with resting). The four conditions 

were presented in two different experiments: vi-

sual-auditory and finger tapping Left/Right. 

During the visual-auditory experiment, sub-

jects were exposed to a flicking black and white 

chessboard and words were vocalized, in a peri-

odic out-of-phase stimulation sequence, alternat-

ing with resting state conditions (visual-rest cycle 

of 16 seconds, auditory-rest of 24 seconds). The 

chessboard was projected in a screen outside the 

scanner, but visualized by the voluntaries using a 

mirror from inside. The words were listened by 

the subjects using headphones adapted to magnet-

ic resonance systems. 

In the motor experiment, the participants 

were asked to perform paced finger tapping move-

ments with left, right or both hands according to a 

visual clue. As in the visual-auditory experiments, 

the sequence of movements was performed in a 

periodic out-of-phase stimulation sequence, alter-

nating with resting state conditions (motion-rest 

cycle of 20 seconds for both conditions).

4.3 Dimensionality reduction
It is hard to classify high-dimensional fMRI 

volumes into visual, auditory and finger tap-

ping (left and right) paradigm. The dimension of 

each 54 brain activated image (converted into a 

feature vector of length 19968) is 256x78 pixel. 

Therefore, a dimensionality reduction must be 

done for decreasing the computational effort nor-

mally required to discriminate data like these. 

The  PCA formulation was used as a dimen-

sionality reduction method. This formulation 

can be applied in image patterns identification 

and low-loss images compression by reducing the 

number of dimensions, without much loss of in-

formation (HAYKIN, 1999). 

The bases of PCA formulation is the repre-

sentation of an image in terms of its components 

(eigenvectors). In this formulation, it is formed a 

feature vector, a matrix of vectors, with the eigen-

vectors in the columns: 

feature_vector = (eig1, eig2,  eig3, … eign)

Each eigenvector has an associated eigenvalue. 

The highest eigenvalue is the first principle com-

ponent (PC) of the image. The smaller ones are the 

less significant components. The dimensionality 

reduction consists of choosing the less significant 

components to leave out the feature vector.

The resulting compressed image is the one 

which the feature vector has as many less sig-

nificant components as possible, which means 

as many principal components as possible 

(SMITH, 2002). Therefore, the image compres-

sion rate can be quantified from the number of 

PC chosen, that is, the less is the amount of PC 

the more compressed is the final image. In our 

studies compressed images with 10 to 60 PC 

were obtained. 
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4.4 Pattern recognition
The pattern recognition step can be orga-

nized in two sessions: 

• The training session;

• The test session.

4.4.1 Training session 
During the training session, the MLP with 

a hidden layer of 200 neurons was trained with 

a set of 216 (54 image per paradigm) compressed 

images translated into compressed feature vector 

(CFV). All the training session were performed in 

a leave-one-out fashion (HAYKIN, 1999). The 

value of the training parameters of the MLP net-

work (learning factor, momentum, total number 

of hidden neurons, etc.) were exhaustively chosen 

until the best MLP performance was obtained. 

Table 1 shows training parameters for each value 

of PC.

4.4.2 Test session 
In the test session, predictions of a particular 

paradigm are performed (or visual or auditory or 

finger tapping) as described in section 4.4. 

4.4.2.1 Classifier performance
The classifier’s performance was evaluated in 

terms of the ratio of the number of test volumes 

wrongly classified to the total of tested activation 

maps (the error rate), the sensitivity and the speci-

ficity in separating the underlining paradigms: vi-

sual from auditory and left finger tapping from 

right finger tapping and the area Az under the 

ROC curve.

4.4.2.1.1 Prediction accuracy rate
A classical manner to evaluate the classifier’s 

performance is the computation of the prediction 

accuracy (the ratio of the number of test CFV cor-

rectly classified to the total of tested CFV). The 

graphic shown in Figure 3 plots the prediction ac-

curacy associated with some values of PC (image 

compression rate). 

4.4.2.1.2 Sensitivity and specificity
Table 2 shows values of sensitivity (se) and 

specificity (sp) found during the test session relat-

ed to the training set at hand, in two situations: 

Sit1 – The separation of visual paradigm from 

auditory paradigm.

Table 1: Training parameters used during the 
training session

Training
Principal components

10 20 50 60

The amount 
of hidden 
neurons

200 200 200 200

The number of 
layers 3 3 3 3

Epoch1 250/300 230/300 220/300 220/300

mse2 0.09/0.01 0.09/0.01 0.08/0.01 0.08/0.01

Learning  
factor (η) 0.6 0.6 0.6 0.6

Momentum (a) 0.999 0.999 0.999 0.999

1 The training epoch: rate between the means value 
found for all training cases and the maximum value.
2 The means square error (mse): the rate between the 
maximum performance and the performance goal.
Source: The authors.
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Figure 3: The dependence of prediction 
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Source: The authors.
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Sit2 – The separation of left finger tapping 

paradigm from right finger tapping paradigm.

The table also shows the influence of 

the number of principal components (PC) on 

the values of sensitivity, specificity and the 

elapsed time for each training session. The 

quantity of PC, establishes how compressed 

will be the final image after the application of 

the PCA formulation. According to this sec-

tion, low values of PC produces images with 

high compression rate and high amount of PC 

produces an opposite situation. So it is inter-

esting to demonstrate the influence (if any) of 

the image compression rate on the MLP per-

formance. 

4.4.2.1.3 The ROC curve
In this section, the classifier performance is 

evaluated in terms of the area Az under the ROC 

curve (METZ, 1986; WOODS and BOWYER, 

1997). For a specific value of PC, one ROC plots 

the ability of the MLP in separating visual para-

digm from auditory paradigm (Figures 4 or 6 and 

another one plot the discrimination performed be-

tween right finger tapping and left finger tapping, 

Figures 5 or 7).

Table 2: The influence of the principal 
components on the values of sensitivity (se) and 
specificity (sp)

Test with paradigm

Principal components

10 20 50 60

se sp se sp se sp se sp

Visual vs. auditory1 0.98 0.85 1.00 0.93 0.98 0.94 1.0 1.00

Left finger tapping vs. 
right finger tapping2 0.84 0.98 0.96 0.94 0.96 0.98 1.0 1.00

Simulation time3 3h46min 5h16min 10h 05min 13h50min

1 se = probability of correctly predicting visual paradigm; 
sp = probability of correctly predicting auditory para-
digm.
2 se = probability of correctly predicting left finger tap-
ping paradigm; sp = probability of correctly predicting 
right finger tapping paradigm.
3 Time required for training the MLP network in leave-
one-out fashion: The MLP code was written in MATLAB 7 
language (R2006b) and run on a Pentium IV computer, 
with a speed of 3.0 GHz and RAM of 3 Gbytes.

Source: The authors.

ROC PC = 50 (right finger tap vs left finger tap)
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Figure 5: The ROC curve of the MLP classifier. TPF 
is the probability of correctly predicting right 
tapping paradigm and FPF is the probability of 
incorrectly predicting right tapping paradigm 
as left tapping paradigm. The area under curve 
(Az) is 0.972
Source: The authors.

ROC PC = 50 (auditory vs visual)
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Figure 4: The ROC curve of the MLP classifier. 
TPF (True Positive Fraction) is the probability of 
correctly predicting auditory paradigm and 
FPF (False Positive Fraction) is the probability 
of incorrectly predicting auditory paradigm as 
visual paradigm. The area under curve (Az) is 
0.998

Source: The authors.
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5 Discussion

5.1 Classifier performance in terms 
of “prediction accuracy”
The dependency of the MLP “prediction ac-

curacy” with the number of PC is displayed in 

figure 3. Each PC indirectly expresses the com-

pression rate of the images used for training the 

MLP network.  

Section 4.3 briefly describes the dimension-

ality reduction provided by the PCA formulation. 

According to this section, the underlining formu-

lation is an authentic low-loss image compression. 

The base of the data compression is the quantity of 

PC used. As mentioned in this section, the small is 

the amount of PC the higher is the image compres-

sion rate. However, compressed images with few 

PC should not be used to avoid loss of information 

and drops in classification’s performance.

The graphic plotted in Figure 3 confirms these 

arguments. As it can be seen, the median “predic-

tion accuracy” of the MLP classifier assumes the 

values 1, 0.954, 0.953 and 0.843, respectively, as 

the classification is performed respectively with 

60, 50, 20 and 10 PC.

5.2 Classifier performance in terms 
of “sensitivity” and “specificity”
In table 2, for visual and auditory paradigm 

discrimination, “sensitivity” is the probability of 

correctly predicting visual paradigm, and “speci-

ficity” is the probability of correctly predicting au-

ditory paradigm. According to this table, the “sen-

sitivity” and the “specificity” of the classifier are 

improved as the number of PC grows. This dem-

onstrates that high image compression rate (low-

PC) has a tendency to deteriorate the discrimina-

tion performance and a growing in PC (low image 

compression rate) produces relevant gains in over-

all performance. However, the performance in 

discriminating visual paradigm is slightly better 

(up to 7%, between 50 and 60 PC) than the ability 

in recognizing auditory paradigm. 

For left and right finger tapping paradigm, 

“sensitivity” is the probability of correctly pre-

dicting left finger tapping paradigm and “speci-

ficity” is the probability of correctly predicting 

ROC PC = 10 (auditory vs visual)
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Figure 6: The ROC curve of the MLP classifier. 
TPF is the probability of correctly predicting 
auditory paradigm, and FPF is the probability 
of incorrectly predicting auditory paradigm as 
visual paradigm. The area under the curve (Az) 
is 0.976
Source: The authors.

ROC PC = 10 (right finger tap vs left finger tap)
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Figure 7: The ROC curve of the MLP classifier. TPF 
is the probability of correctly predicting right 
tapping paradigm, and FPF is the probability of 
incorrectly predicting right tapping paradigm as 
left tapping paradigm. The area under the curve 
(Az) is 0.957
Source: The authors.



Artigos

319Exacta, São Paulo, v. 5, n. 2, p. 311-320, jul./dez. 2007.

right finger tapping paradigm. The results shown 

in Table 2 are similar to those found with visual 

and auditory paradigm. In any case, an improve-

ment in performance is observed as the amount of 

PC (decrease in image compression rate) increases 

from 10 to 60.

Additionally, in Table 2 the simulation times 

are relevant information to perform a fast train-

ing session, with a desired compression rate (val-

ues of PC). As it can be seen on this table, for a 

particular prediction (high values of “sensitivity” 

and “specificity”), slow training session produces 

good classifier performance. So there must be a 

balance between training time and “prediction 

accuracy”.

5.3 Classifier performance in terms 
of the area under the ROC
Figures 5 to 7 display the performance of the 

classifier in discriminating the underlining para-

digms in terms of the receiver operating character-

istics (ROC) curve, which represents the variation 

of the true-positive fraction (TPF) versus the false-

positive fraction (FPF) in pattern classification. 

The area under the ROC curve (Az) may be used 

as a consolidated measure of classification accu-

racy or performance (METZ, 1986; WOODS and 

BOWYER, 1997).

In the ROC of Figure 4, TPF is the prob-

ability of correctly predicting auditory paradigm, 

and FPF is the probability of incorrectly predict-

ing auditory paradigm as visual paradigm. In the 

ROC of Figure 5, on the other hand, TPF is the 

probability of correctly predicting right tapping 

paradigm and FPF is the probability of incor-

rectly predicting right tapping paradigm as left 

tapping paradigm. Comparing the values of Az 

computed in these figures (0.998 and 0.972), re-

garding the previews arguments and the image 

compression rate (PC = 50), it is easy to conclude 

that the classifier performance in discriminating 

auditory paradigm from visual is better than the 

performance in separating right tapping para-

digm from left paradigm.

As for the case of PC 10, the meaning of TPF 

and FPF are the same of figures 6 and 7. The values 

of Az however (0.976 and 0.957) are lower than 

the values with PC 50. This demonstrates the in-

fluence of image compression rate on the classifier 

performance. Comparing the values of Az itself, 

one could get on the same conclusion: the classi-

fier best performance is observed in the separation 

between auditory and visual paradigms.

6 Final considerations

In this study, it was demonstrated good ac-

curacy of the MLP classifier in predicting (infer-

ring) paradigms performed by subjects and the 

influence of the principal components (PC) on the 

inference performance as well. By using a MLP 

neural network, it is possible to infer what para-

digm a subject performed from fMRI volumes, so 

far unseen by the MLP classifier. The desired in-

ference accuracy can be foreseen from the amount 

of PC used for training the MLP. Our results show 

that training the MLP with high-PC produce bet-

ter inference performance than training with low-

PC even though there is a tendency of a too slow 

training session with high-PC. These results not 

only demonstrate the undeniable benefit of using 

MLP implementation in neuroimaging research, 

but also the possibility of saving training time by 

choosing the appropriated number of PC that pro-

duces the best inference performance. 

To summarize, the novelty in this work was 

to demonstrate that it is possible to use a neural 

network implementation to infer the tasks per-

formed by subjects. The bases of our approach 

deal with statistical parametric maps (translated 

into feature vector), PCA formulation and the 
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separation of them into groups of auditory, visual, 

left and right finger tapping paradigms. 
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