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An automated tetrahedral mesh generator  
for computer simulation in Odontology based 

on the Delaunay’s algorithm

In this work, a software package based on the Delaunay’s 
algorithm is described. The main feature of this package is 
the capability in applying discretization in geometric domains 
of teeth taking into account their complex inner structures 
and the materials with different hardness. Usually, the mesh 
generators reported in literature treat molars and other teeth 
by using simplified geometric models, or even considering the 
teeth as homogeneous structures. 
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1 	 Introduction

The Finite Element Method (FEM), although 

possessing a very high potential for applications 

in computer simulation and analysis of biologi-

cal tissues and structures, for its operation, it is 

necessary a good (realistic) discretization of the 

related geometric domains in finite element me-

shes. Whenever anisotropic or non-homogeneous 

properties are present, the different regions of the 

problem must be conveniently identified and dis-

cretized into finite elements with consistency. 

Flaws in the mesh generation, also known 

as degeneracies, such as “overlapping” (superpo-

sition of elements) and “sliver” tetrahedra (flat 

elements of near-zero volume), should be absent. 

Besides, it is desired that the mesh generation al-

gorithm itself should be robust, and require few 

manual interactions from the user during the com-

puter simulation. 

Although the improvement of three-dimensio-

nal mesh generation methods still remains a research 

topic for the FEM applications community, a rema-

rkable degree of maturation and experience was al-

ready reached for some approaches (LIN et al., 1999; 

KRŠEK; KRUPA, 2003; CLEMENT et al., 2004). 

Apart from this, Delaunay’s algorithm and its 

variations are efficient for regular and irregular solid 

modeling, such as the geometry of the tooth anatomy 

(HERMELINE, 1982; MARRETO; MACHADO, 

1998). This study will describe the implementation of 

a C++ program, developed with help of object orien-

ted programming concepts, which implements and 

applies Delaunay’s algorithm for the generation of 

3D meshes in teeth structures (SAKAMOTO, 2001; 

MARRETO; MACHADO, 1998). 

A special care was taken for the realistic des-

cription of internal structures, and meshes with 

more than 7000 tetrahedra were generated in the 

test cases. In the next sections, the tooth embe-

dding and image processing is addressed, a short 

review of the Delaunay’s algorithm is presented, 

and software descriptions and test examples are 

shown to demonstrate the efficiency code.

2 	 Tooth embedding and 
image processing

In order to apply the Delaunay’s algorithm 

in computer simulations in odontology, a set of 

points describing the tooth surface model must be 

obtained. For discretization, the tooth is included 

in resin and this inclusion is sliced in a number of 

parallel cuts, defining cross sections of the tooth. 

The different boundary regions (enamel, dentine, 

pulp) are scanned to generate sets of points. 

An inferior molar for instance may be sliced 

into 12 different cuts with 1 mm of thickness. The 

union of these point sets reproduces the three-di-

mensional tooth geometry, and B-spline interpola-

tions are used if it is necessary, to improve some 

contour interfaces. This is in fact the classical and 

easiest approach for geometry generation, and is 

mentioned for example in Lin et al. (1999). 

Figure 1 shows a cloud of points for an infe-

rior molar slice and the original boundary regions; 

Figure 2 shows the dental boundaries detected by 

the slices, and Figure 3 shows the entire cloud of 

measured points for all slices. It should be rema-

rked that the Delaunay’s algorithm requires only 

the clouds of points as input, and breakings of 

prescribed boundaries (if they are present) may be 

corrected after the discretization by comparison 

and remeshing. 

3 	 The three-dimensional 
Delaunay algorithm

Most of the implementations of Delaunay al-

gorithm, a given three-dimensional domain is cha-
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racterized as a discrete set of points, which will be 

inserted recursively one at a time as the original 

mesh grows. The most common implementation 

of this algorithm is due to Watson (1981), and 

contains essentially four steps: 

An initial mesh of tetrahedra is formed by 

taking a combination of the 8 vertices of a box 

which encloses the volume to be discretized into 

tetrahedra. The box dimensions are selected 

in such a way that all points in the volume are 

perfectly included by the box and far from its 

boundaries;

In a typical working stage of Watson tech-

nique, a new point from the volume is inserted, 

and a test is made to select those circumspheres 

of the existing tetrahedra which will contain this 

new point. The selected tetrahedral are then com-

pared and their common faces are removed. The 

mesh is updated by forming new tetrahedra with 

the inserted point and the remaining faces;

These new tetrahedra in step 2 are combined 

with those in which the associated circumspheres 

do not contain the inserted point;

Steps 2 and 3 are repeated recursively for all 

points forming the volume. Once the mesh is fini-

shed, all tetrahedral containing vertices from the 

enclosing box are deleted.

The basic process may be outlined as follows 

in Table 1:

Some degeneration may occur in this tech-

nique such as: “overlapping” (tetrahedra super-

position), “sliver” tetrahedra (flat elements of ne-

ar-zero volume) and failures in the inclusion test 

(SUGIHARA; INAGAKI, 1995). This is mainly 

due to round-off errors and points placed exactly 

Figure 1: The original slice and measure points of 
the tooth 
Source: The authors.

Figure 2: Dental boundaries detected of the 
slices 
Source: The authors.

Figure 3: The entire cloud of measured points for 
all slices
Source: The authors.
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on the boundaries, but cures and diagnostics were 

already extensively discussed in several articles 

(CAVENDISH; FIELD; FREY, 1985; PRIEST, 

1991; SHEWCHUK, 1996; 1997) and properly 

treated in this study. 

In relation to treatment of the degeneracies, 

an alternative developed by the authors to redu-

ce the degenerated Delaunay tetrahedralization is 

to verify the determinant associated with the new 

tetrahedra. In this case, no determinant should be 

null, otherwise the matrix is singular and a new 

combination should be used. This can be establi-

shed through a small arbitrary perturbation in the 

input vertices, or in addition of new points in spe-

cific places. 

This implementation was executed in two 

phases: 

The programs for mathematical model, 

The functions for graphics visualization. 

In the phase 1, a version of the algorithm 

was developed using the C++ oriented objects 

programming language “for to” of Windows and 

Linux environment. In the phase 2, the graphic 

library resources of Mathematics package (ver-

sion 5.0) were adapted for graphic visualization 

(WOLFRAM, 1991). 

In the next section, it is described the vali-

dation tests, performances and some implemented 

cures for mesh degeneration.

4 	 Validatiom Tests

Due to the peculiar features of geometry 

and internal structures of a tooth, some degene-

rate tetrahedra may occur in the discretization. 

According to our experiments, the most frequent 

degeneracies to appear were:

The rupture of internal boundaries between 

regions;

The generation of “overlapping” elements;

“Sliver” tetrahedral.

The rupture of boundaries (shown in Figure 

4) is corrected by the local insertion of a new 

point, close to the medium point in the affected 

subdomain boundary. Non-convex subdomains 

may also disturb the mesh quality, but in this case 

a simple cure is performed by deleting the tetrahe-

dra in the convex subdomain. Figure 5 shows this 

kind of correction. 

As already mentioned in the previous sec-

tion, “sliver” tetrahedra and “overlappings” can 

be miminized by generation of non-singular ma-

trix. The remaining “overlappings” are corrected 

by slight disturbances of the original point coor-

dinates, followed by insertion, discretization and 

subsequent reset to the original coordinate values.

However, “overlappings” were very rare sin-

ce the domain to discretize is not a regular solid 

(KANAGANATHAN, 1991). The software has 

detection routines which minimize these degene-

rations and allow few interventions from the user 

during the meshing process. 

In order to validate the resulting mesh quality, 

the implementation was tested for a set of discre-

tization points of an inferior molar geometry. Two 

kinds of meshes were generated: a tooth without 

Table 1: Delaunay tetrahedralization algorithms 
FOR i=1 TO number of points
	 FOR j=1 TO number of tetrahedra 
		  Compute the circumsphere Cj of the tetrahedron Tj

		  IF Cj contains the point i THEN
			   Add Tj to the list of faces,
			   Add Tj to the list of candidates for deletion,
			   Mark Tj for deletion from the list of tetrahedra in 
the mesh.
END;
END;
Eliminates the tetrahedra marked for deletion. Eliminate 
all common faces in the list of faces. Form new tetrahedra 
with point i and the remaining faces according to the 
algorithm. Add these tetrahedra to the list of tetrahedra.
END.

Source: Watson, 1981.
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inner structures, only enamel, and a tooth with 

internal structure, i.e., enamel, dentine and pulp. 

Figure 6 shows a meshed slice from the tooth, and 

Figure 7 is the entire mesh including all inserted 

points (without internal structure). The enamel, 

dentine and pulp meshed structures are shown 

in Figures 8, 9 and 10 respectively. Figure 11 is 

a cut in the three-dimensional structure, showing 

the different meshed regions and their boundaries. 

It is clear that interfaces between regions and the 

entire geometry were preserved by the final mesh. 

The Table 2 shows the number of elements 

generated in the mesh of the tooth surface mo-

del (only enamel) and the final mesh taking 

into account the different tissues (enamel, den-

tine and pulp).

5 	 Concluding Remarks

In the Finite Element Method (FEM) analysis, 

solid modeling and discretization are the most time 

demanding steps, requiring a great amount of user 

intervention. In this article, a software tool for the 

meshing of irregular solids was described, which is 

capable of realistic meshing dental structures. 

Figure 4: The rupture of boundaries 
Source: The authors.

Figure 5: Disturb of the mesh in non-convex 
subdomains and the correction 
Source: The authors.

Figure 6: Meshed slice from the inferior molar 
Source: The authors.

Figure 7: Mesh of the tooth without internal 
structure (only enamel tissue) 
Source: The authors.



242 Exacta, São Paulo, v. 6, n. 2, p. 237-243, jul./dez. 2008.

Results shown were plenty satisfactory, al-

lowing the possibility of accurate stress simula-

tions and other applications in Dentistry.

Future works intend to apply three-dimen-

sional Delaunay refinement algorithms that offer 

a guarantee on some measure of shape, such as 

bounded aspect ratio, non-obtuse elements, and 

tetrahedra with no small angles, except the small 

angles inherent in the input geometry. Besides, 

dental biomechanics, determination of stress and 

strain levels can be investigated.
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Figure 8: The enamel meshed structure 
Source: The authors.

Figure 9: The dentine meshed structure 
Source: The authors.

Figure 10: The pulp meshed structure 
Source: The authors.

Figure 11: Cut in the three-dimensional structure 
Source: The authors.

Table 2: Number of elements for an inferior molar

Materials with different 
hardness Tetrahedra number

Only enamel tissue 3251

Enamel, dentine  
and pulp tissues 7094

Source: The authors.



Artigos

243Exacta, São Paulo, v. 6, n. 2, p. 237-243, jul./dez. 2008.

References
CAVENDISH, J. C.; FIELD, D. A.; FREY, W. H. An 
approach to automatic three-dimensional finite element 
mesh generation. International Journal for Numerical 
Methods in Engineering, USA, v. 21, p. 329-347, 1985.

CLEMENT, R.; SCHNEIDER, J.; BRAMBS, H. J.; 
WUNDERLICH, A.; SANDER, F. G. Quasi-automatic 
3D finite element model generation for individual 
single-rooted teeth and periodontal ligament. Computer 
Methods and Programs in Biomedicine, Ireland, v. 73, 
(2), p. 135-144, 2004. 

HERMELINE, F. Triangulation automatique dún 
polyèdre en dimension n. R.A.I.R.O. Analyse 
Numérique/Numerical Analysis, Paris, v. 16, n. 3, p. 
211-242, May 1982. 

KANAGANATHAN, S.; GOLDSTEIN, N. B. 
Comparison of four-point adding algorithms for 
Delaunay-type three-dimensional mesh generators, IEEE 
Transactions on Magnetics, v. 27, n. 3, p. 3444-3451, 
1991.

KRŠEK, P.; KRUPA, P., Human tissue geometrical 
modelling. In: Applied Simulation Modeling. Calgary, 
CA: IASTED, 2003. p. 372-362. 

LIN, C. L.; CHANG, C. H.; CHENG, C. S.; LEE, H. E. 
Automatic finite element mesh generation for maxillary 
second premolar. Computer Methods and Programs in 
Biomedicine, Ireland, v. 59, p. 187-195, 1999. 

MARRETO, C. A. R.; MACHADO, J. M. A compact 
library for automatic generation of tetrahedral meshes 
using the mathematica system. Proc. of 8th International 
IGTE Symposium on Numerical Field Calculation in 
Electrical Engineering & European TEAM Workshop, 
Austria 1998, p. 116-120. 

PRIEST, D. M. Algorithms for arbitrary precision 
floating point arithmetic. Proc. 10th Symposium on 
Computer Arithmetic, California: IEEE Computer 
Society Press, 1991. p. 132-143. 

SAKAMOTO, M. M. Implementação de um gerador 
tridimensional de malhas de elementos finitos com 
aplicações à simulação computacional em odontologia. 
2001. Dissertação (Mestrado)- Instituto de Biociências, 
Letras e Ciências Exatas, Universidade Estadual Paulista, 
São José do Rio Preto, 2001.

SHEWCHUK, J. R. Robust adaptive floating-point 
geometric predicates. Proc. of 12th Annual Symposium 
on Computational Geometry, Pennsylvania, 1996, p. 
141-150.

SHEWCHUK, J. R. Delaunay refinement mesh 
generation. 1997. PhD. Thesis. School of Computer 
Science, Carnegie Mellon University, Pennsylvania, 1997. 

SUGIHARA, K.; INAGAKI, H. Why is the 3D Delaunay 
triangulation difficult to construct? Information 
Processing Letters, Ireland, v. 54, p. 275-280, 1995.

WATSON, D. F. Computing the n-dimensional Delaunay 
tessellation with application to Voronoi polytopes, 
Comput. J., London, England, v. 24, p. 167-172, 1981. 

WOLFRAM, S. Mathematica: A system for doing 
mathematics by computer. 2nd ed. Redwood City, 
Canada: Addison-Wesley, 1991.

Recebido em 13 ago. 2008 / aprovado em 11 dez. 2008

Para referenciar este texto 

SAKAMOTO, M. M.; CARDOSO, J. R.; MACHADO, 
J. M. An automated tetrahedral mesh generator for 
computer simulation in Odontology based on the 
Delaunay’s algorithm. Exacta, São Paulo, v. 6, n. 2, 
p. 237-243, jul./dez. 2008.




