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Low-loss image compression techniques  
for cutting tool images: a comparative study  

of compression quality measures
Técnicas de Compressão com Baixa Perda de Imagens de Ferramentas de 
Corte: um estudo comparativo de medidas de qualidade de compressão

This work accomplishes a comparative study between two distinct image 
compression techniques, namely the Lifting technique and the Principal 
Components Analysis (PCA), in order to determine what of these two ap-
proaches is more appropriate for cutting tool wear images analysis. Lifting 
and Principal Components Analysis were applied in original images of a 
cutting tool for producing a low resolution version, while keeping the more 
important details of the image. The low-loss image compression quality 
provided by these techniques was expressed in terms of the compression 
factor (ρ), the Mean Square Error (MSE) and the Peak Signal-to-Noise 
Rate (PSNR) provided by the image compression process. The tests were 
accomplished using the high-performance language for technical computing 
MATLAB®, and the results shown that the PCA technique presented the 
best values of PSNR with low compression rates. However, with high values 
of compression rates the lifting technique gave the highest PSNR.

Key words: Cutting tool. Image compression. Lifting technique. Principal 
Components Analysis. 

Este trabalho realiza um estudo comparativo entre duas diferentes técnicas 
de compressão de imagens, a técnica de Lifting e a Análise de Componentes 
Principais (PCA), visando determinar qual das duas abordagens é mais 
apropriada para a análise de imagens de ferramentas de corte desgastadas. 
As técnicas de Lifting a PCA foram aplicadas em imagens de ferramentas 
de corte para produzir versões de baixa resolução, mantendo os detalhes 
mais importantes da imagem. A qualidade da compressão de baixa perda 
da imagem para ambas as técnicas foi expressa em termos do fator de com-
pressão (ρ), do Erro Quadrático Médio (MSE) e a Relação Sinal-Ruído de 
Pico (PSNR) gerado pelo processo de compressão. Os testes foram realizados 
usando a linguagem de computação numérica de alto desempenho MATLAB, 
e os resultados mostram que a técnica PCA apresenta os melhores valores de 
PSNR para baixas taxas de compressão. Entretanto, para altos valores de 
taxas de compressão a técnica de lifting produziu maiores valores de PSNR.

Palavras-chave: Análise de Componentes Principais. Compressão de ima-
gens. Ferramenta de corte. Técnica de lifting. 
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1  Introduction

In recent years, the use of computer vision-

based systems and artificial intelligence tech-

niques as such, artificial neural network, to esti-

mate tool’s lifetime in metal cutting process has 

been aimed by many researches (ALAJMI et al., 

2005; PATRA et al., 2007; CHAO and HWANG, 

1997; ALAJMI and ALFARES, 2007; VOLKAN 

ATLI et al., 2006; GADELMAWLA et al., 2008; 

INOUE, KONISHI and IMAI, 2009; WANG et 

al., 2009). Usually, the lifetime is predicted by de-

tecting visible – sometimes very small – degenera-

tion in images of a cutting tool, which is supplied 

by a typical experiment in the turning process. In 

order to make visible small changes or degenera-

tions in a cutting tool, this experiment tends to 

generate high-resolution images. Finding patterns 

in high-resolution images can be a hard and time 

consuming task to the most artificial neural net-

work approaches (HAYKIN, 1999). So, in order 

to obtain relevant enhancement in patterns recog-

nition performance, before using images as input 

cases in the neural network training processes, it 

is common to apply some low-loss image compres-

sion techniques. 

In this context, wavelet decomposition is 

recognized as a powerful tool for image analysis 

and data compression. In fact, many works has 

shown how to use wavelets transform for creating 

data compression methods with great potential 

to compress large-scale, three-dimensional image 

data files, while keeping the most important in-

formation necessary to find patterns in the data 

(GRGEĆ et al., 2000; LO et al., 2003; O’ROURKE 

and STEVENSON 1995; UHL, 1997). However, 

despite its good properties the numerical perfor-

mance of the wavelet transforms can be improved 

through the lifting technique. 

The lifting technique is a method introduced 

by W. Sweldens (1996), which allows to create an 

wavelet transform algorithm with smaller memo-

ry requirement and a reduced number of floating 

point operations, if long filters are used, keep-

ing the efficiency of the technique (SWELDENS, 

1996; DAUBECHIES and SWELDENS, 1998). 

Thenceforth, the lifting-based wavelet transform 

has been applied in many applications worldwide 

(SPIRES, 2005; PIELLA, PAU and PESQUET-

POPESCU, 2005; VASUKI and VANATHI, 

2007; MATHEW and SINGH, 2009; ROJALS, 

2006; MATÍNEZ-TRINDAD, OCHOA and 

KITTLER, 2006). Although this great success of 

the lifting technique, its use in the cutting tool im-

age analysis practically does not exist (PEREIRA 

et al., 2009).

On the other hand, there are some statisti-

cal techniques that also can provide a powerful 

tool for data dimension reduction and pattern 

recognition. As the dimensionality reduction 

problem is directly related to image compression, 

these techniques are often used in image process-

ing. Principal component analysis is one of those 

statistical techniques and it has been widely ap-

plied in the area of image compression in vari-

ous forms (HUHLE, 2006; NA et al. 2007; KIM, 

FRANZ and SCHOLKOPF, 2005; KIM, 2007). 

Also in this case, as for the cutting tool image 

analysis, the results are very incipient (QIXIN, 

2008; KHANDEY, 2009; KARACAL, CHO, 

and YU, 2009).

In this work, we accomplish a compara-

tive study between the Lifting technique and 

the Principal Components Analysis, in order 

to determine what of these two approaches is 

more appropriate for cutting tool wear images 

analysis. Lifting and PCA were applied in an 

original image of a cutting tool for producing a 

low resolution version, while keeping the more 

important details of the image. The low-loss im-

age compression quality provided by these tech-

niques was expressed in terms of the compres-
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sion factor (ρ), the Mean Square Error (MSE) 

and the Peak Signal-to-Noise Rate (PSNR) 

provided by the image compression process. 

The tests were accomplished using the high-

performance language for technical computing 

MATLAB®, and the results shown that the PCA 

technique presented the best values of PSNR 

with low compression rates. However, with high 

values of compression rates the lifting technique 

gave the highest PSNR.

2  Principal Components 
Analysis – PCA

2.1 Dimensionality reduction 
provided by PCA
The PCA scheme is a formulation that proj-

ects a dataset X of vector x∈RN onto an orthonor-

mal base in RN, defined as a set of M eigenvectors 

ei∈RN, i = 0,1,…M-1, of the covariance matrix of 

X, such that the base is oriented in the direction 

that provides the maximum variance of X in RN 

(CASTRO, 1996; SMITH, 2002 ).

The most important application of PCA is 

the dimensionality reduction of a dataset X. The 

principle of dimensionality reduction is the rep-

resentation of the dataset X in terms of eigenvec-

tors ei∈RN  (components) of its covariance ma-

trix (SMITH, 2002). The eigenvectors oriented 

in the direction with the maximum variance of 

X in RN carry the most relevant information of 

X. These eigenvectors are called principal com-

ponents. The dimensionality reduction consists 

of choosing the eigenvectors that carry, the 

least significant components, i.e., with the least 

variance, to leave out the dataset X (JIEPING, 

JANARDAN and LI, 2004).

Assume that n images in a set are originally 

represented in matrix form as Ui∈Rr⨯c, i = 1, …, 

n, where r and c are, repetitively, the number of 

rows and columns of the matrices. In vectorized 

representation (matrix-to-vector alignment) each 

Ui is a N = r⨯c -dimensional vector ai computed by 

sequentially concatenating all of the lines of the 

matrix Ui. Considering the matrix-to-vector align-

ment n images can be represented by only one sin-

gle matrix U∈Rn⨯N, where each line corresponds 

to a single image Ui in form of vector ai∈RN.

To compute the Principal Components 

the covariance matrix of U is formed, namely 

∑ = UTU, where T addresses the matrix transpose 

operation, and eigenvalues, with the correspond-

ing eigenvectors, are evaluated. The eigenvectors 

forms a set of linearly independent vectors, i.e., 

the base {ϕ}n
i=1 which consist of a new axis system 

(JIEPING, JANARDAN and LI, 2004).

To perform the dimensionality reduction, the 

entire matrix U is projected onto the base {ϕ}n
i=1  

that is, assuming U = (a1,…,an), its coordinates on 

a new axis system are (Uϕ1,…,Uϕn). By choosing p 

eigenvectors corresponding to the largest p eigen-

values, such that p is less than n, an authentic de-

creasing in dimension is performed and the coor-

dinates of U projected in this reduced p-dimension 

sub-space are (Uϕ1,…,Uϕp). 

The aim of PCA is finding the maximum 

variance of the projections of U onto the p-dimen-

sion sub-space {ϕ1,…,ϕp}, i.e., if G = [ϕ1,…,Uϕp] is 

one matrix of eigenvectors corresponding to the 

largest p eigenvalues of ∑, then G is the solution 

of the following optimization problem (SMITH, 

2002): 

,
(1)

where ai are the rows of matrix U, 
 
is

the mean, Ip is the pxp identity matrix and ‖ ‖2 

denotes the norm two of a vector. In the solu-



228 Exacta, São Paulo, v. 8, n. 2, p. 225-235, 2010.

Low-loss image compression techniques for cutting tool images: a comparative study of compression…

tion provided by G, the projections of data im-

age U onto the p-dimension sub-space {ϕ1,…,ϕp} 

have the largest variance (largest energy stored) 

 among all the p-dimension 

axes systems.

2.2 PCA Image compression 
scheme
For image compression purpose an image  

I∈Rr⨯c, where r and c are repetitively the num-

ber of rows and columns of the matrix, is divid-

ed into n sub-image {subr’⨯c’}
n
j=1, where r’ < r and 

c’ < c. The matrix U is formed by vectorazing all 

of {subr’⨯c’}
n
j=1 

such that each line of U is a matrix-

to-vector alignment of a particular {subr’⨯c’}
n
j=1 . As 

mentioned before, the energy stored in a particular 

direction (the variance of the projection of U onto 

the p-dimension sub-space {ϕ1,…,ϕp}) is the eigen-

value associated to eigenvectors in this direction. 

Therefore it is possible to exclude some directions 

(sub-spaces) defined by eigenvectors which the ei-

genvalue is less significant than other eigenvalues.

As the sub-spaces with the least energy are 

excluded a low-loss data compression of U is per-

formed (SMITH, 2002), because the leaved out 

sub-spaces generally carry irrelevant information 

of U. In this sense, U had a dimensionality reduc-

tion because initially it was represented in Rn⨯N 

and, after removing the least significant sub-spac-

es, U became U’ a dataset represented in a dimen-

sion less than n⨯N with low-loss of information.

According to (SMITH, 2002) the low-loss 

image compression provided by PCA method can 

be expressed in terms of the compression factor 

(ρ), the Mean Square Error (MSE) in approximat-

ing U by U’ and the Peak Signal-to-Noise Rate 

(PSNR) provided by the image compression pro-

cess i.e., the ratio between the maximum possible 

component of U and the power of MSE (noise) 

that affects the fidelity of the approximation. The 

compression factor is defined as

,
(2)

while the MSE of approximating U by U’ is:

,
(3)

and PSNR is defined as

.
(4)

3 Lifting Technique

The mathematical analysis and the sig-

nal processing communities have created sev-

eral algorithms of compactly supported wave-

let. In fact, many other areas of science such 

as engineering, and mathematics have also 

contributed to the development of the wave-

let field (DAUBECHIES and SWELDENS, 

1998; SWELDENS and SCHRÖDER, 1996; 

SWELDENS, 1996; COHEN, DAUBECHIES, 

and FEAUVEAU, 1992; UYTERHOEVEN, 

ROOSE, and BULTHEEL, 1997).

Due to the different origins of wavelets, their 

properties and construction can be motivated and 

understood in different ways. Lifting technique 

is one of these ways and it has some structural 

advantages in relation to traditional approach-

es (DAUBECHIES and SWELDENS, 1998; 

SWELDENS and SCHRÖDER, 1996).

The lifting technique allows some im-

provements on the properties of existing wave-
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let transforms. The basic idea of this technique 

is to exploit the correlation present in most real 

life signals to build a sparse approximation. In 

contrast to traditional approach, which relies 

heavily on the frequency domain, the lifting 

scheme derives all constructions in the spatial 

domain (DAUBECHIES and SWELDENS, 1998; 

SWELDENS and SCHRÖDER, 1996). This fea-

ture allows that the lifting algorithms can easily 

be generalized to higher dimensions and complex 

geometric structures.

For a simple introduction of the lifting 

scheme we considered a finite signal of length 2j, 

which is represented here as:

.
(5)

The lifting scheme assumes that the num-

bers Sj
i,i = 1,…,2j, are not randomly distributed, 

but contain some correlation between the sample 

and its neighbors. Then an odd sample Sj
2k+1 can 

use the average of its two even neighbors for its 

prediction. The detail dk
j-1 is defined as the differ-

ence between the odd sample and its computed 

prediction (Jensen and la Cour-Harbo, 2001), as 

expressed by:

.
(6)

Therefore, if the sample and its neighbors 

have almost the same value, then the difference is 

of course small, and the prediction is good.

To preserve the average value of the original 

signal the values of the difference are redistributed 

to the computed averages issued from the predic-

tion phase. This operation is called update and is 

defined by (7).

.
(7)

This prediction and update steps are of or-

der two. In this case, the prediction will be exact, 

if the original signal is linear and the update will 

preserve the average and the first moment. This 

idea is illustrated in Figure 1.

The procedure defined by (6) and (7) is only 

one example that can be used for constructing 

wavelet transforms and it is part of a large fam-

ily of so-called biorthogonal wavelet CDF(2,2) 

transforms (COHEN, DAUBECHIES, and 

FEAUVEAU, 1992). 

As another example of CDF transforms, which 

have been taken from (COHEN, DAUBECHIES, 

and FEAUVEAU, 1992), the detail dk
j-1 defined in 

the expression (6) above can be defined again as

,
(8)

where,

.
(9)

In all these examples of wavelet transforms 

each pair of prediction and update step is in-

verted separately, as illustrated in Figure 3. It is 

known in the literature that the generalization of 

Figure 1: Prediction is correct for a linear signal 
and the correction is the difference between 
the real middle sample value and its computed 
prediction
Source: The authors.
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this procedure is crucial for application purposes 

(UYTERHOEVEN, ROOSE, and BULTHEEL, 

1997). In this generalization a prediction step is 

followed by an update step and by another predic-

tion and update steps. In this approach the detail  

dk
j-1 can be defined as (10)

,
(10)

where,
 

,
(11)

and
 

.
(12)

The operations (10)-(12) are part of one 

step in the discrete wavelet transform based on 

Daubechies 4 filters (UYTERHOEVEN, ROOSE, 

and BULTHEEL, 1997).

There are many other examples to build wave-

let transforms and some of them can be found in 

(DAUBECHIES and SWELDENS, 1998). Overall, 

the direct lifting transform can be defined as
 

,
(13)

where P and U are, respectively, the prediction 

and update step and the entries sj are sorted into 

even and odd entries (of course, in effective imple-

mentations the entries are not separated).

The prediction and the update lifting steps 

are shown in Figure 2 and the direct and inverse 

lifting steps in Figure 3. As can be observed from 

Figure 3, the inverse transform is easily found by 

flipping the order of the operations and inverting 

its signs. This is an important structural advan-

tage of lifting (SWELDENS, 1996).

3.1 Lifting image compression 
method 
In two-dimensional case the lifting process 

defined by the equations (10)-(12) are applied in 

the rows and columns of the matrix. In this case, 

the lifting transform generates a matrix formed by 

four types of coefficients: the approximation coef-

ficients (A), the horizontal (H), the vertical (V), 

and the diagonal (D) details coefficients. These 

coefficients are called image sub-bands. The ap-

proximation coefficients keep the most important 

information of the matrix, whereas the details co-

efficients possess very small values, close to zero. 

Then, it is possible to choose a value of threshold 

and set to zero all the details coefficients that are 

below that value. As result, it is formed a low-loss 

version of the original image after accomplishing 

Figure 2: Block diagram of prediction and 
update lifting steps
Source: The authors.

Figure 3: Direct (left side) and inverse (right side) 
lifting steps
Source: The authors.
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the inverse lifting transform. This decomposition 

process is part of a multiresolution approach and 

can be continued using the output approximation 

coefficients in the current level as an input signal 

in the next level. 

To illustrate the lifting process an ex-

ample of a single-level lifting decomposition, 

for a simple synthetic image, is presented in 

Figure 4. In this Figure, the upper left plot 

(a) shows the original image, which is based 

on a 128 x 128 matrix where the entries 

with value 1 correspond to black pixels and 

all others entries have value zero. The coeffi-

cients obtained from a lifting transform with 

a Daubechies 2 wavelet are shown in upper 

right plot (b). The bottom left plot (c) shows 

the inverse transform for each coefficient. In 

this case a component of the composition is 

selected, the other three components are re-

placed by zeroes and the lifting inverse trans-

form is applied. The rebuilt image is presented 

in bottom right plot (d).

This example clearly shows the averag-

ing, and the emphasis of vertical, horizontal, 

and diagonal lines, respectively, in the four 

components of the output image. In this ex-

ample, no value of threshold has been used 

and the inverse lifting transform rebuilt the 

original image without any loss of informa-

tion. In order to be able to see the details, the 

grey scale has been adjusted in each of blocks 

of the transform, such that the largest value in 

block corresponds to black and the smallest 

value in a block to whi

4 Experimental Results

Lifting and PCA techniques were applied to 

some cutting tool images in order to produce low 

resolution versions of them. The quality of com-

pressed images was measured in terms of distor-

tion measures such as reconstruction error, Mean 

Square Error (MSE) and Peak Signal-to-Noise 

Ratio (PSNR), as defined in (2)-(4).

Both techniques were applied to the original 

cutting tool image presented in Figure 5. Details 

related to the resolution, format and memory re-

quest for the original image are shown in the sec-

ond column of the Table 1.

Three values of compression rate were previ-

ously selected and the resulting compressed images 

were analyzed by comparing distortion measures 

mentioned above. These experimental results are 

shown in Table 1-3. Table 1 presents the results 

for a compression rate of, approximately, 0.190. 

The corresponding illustrations for this value of 

compression rate are shown in Figure 6. The com-

(a) (b)

(c) (d)

Figure 4: Single-level lifting transform for a 
simple synthetic image. (a) The original image, 
(b) the coefficients obtained from a lifting 
transform with a Daubechies 2 wavelet, (c) the 
inverse transform for each coefficient and (d) 
the rebuilt image
Source: The authors.
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pression rate is defined as 1-compression factor, 

which is calculated as (2).

Tables 2 and 3 present similar results with 

compression rates of 0.5950 and 0.9190, respec-

tively. For these cases, the corresponding illus-

trations are shown in Figures 7 and 8. Despite 

the low PSNR, the PCA image compressed with 

compression rate of 0.9190 looks better than 

the Lifting one, as can be seen in Figure 8.

Figure 5: The original 768x576 pixel cutting tool 
image
Source: The authors.

Table 1: Results with a compression rate of 
approximately 0.1900

Original 
Image

Compres-
sed Image 

through 
Lifting 

Compres-
sed Image 

through PCA

Resolution
(pixel) 768x576 768x576 756x576

File format TIFF Int type Int type

Memory 
request
(bytes)

1327620 – –

Memory 
request
(int type 

store unit)

430276 351410 352800

Compres-
sion factor – 0.8100 0.8102

Compres-
sion rate – 0.1900 0.1898

PSNR (dB) – 48.220 80.037

Source: The authors.

Table 2: Results with a compression rate of 
approximately 0.5950

Compressed 
Image through 

Lifting 

Compressed 
Image through 

PCA

Resolution
(pixel) 768x576 756x576

File format Int type Int type

Memory request
(bytes) – –

Memory request
(int type store 

unit)
176382 176400

Compression 
factor 0.4028 0.4051

Compression rate 0.5972 0.5949

PSNR (dB) 33.410 45.011

Source: The authors.

Lifting compressed image - 0.1900 compression rate

PCA compressed image - 0.1898 compression rate

Figure 6: Compressed images for results shown 
in table 1
Source: The authors.
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5 Conclusions

This work accomplishes a comparative 

study between two distinct low-loss image com-

pression techniques, i.e., the Lifting technique 

and the Principal Components Analysis, in or-

der to select the more appropriate image com-

pression technique for reducing the memory size 

to store cutting tool images, keeping the main 

important features. 

These compression techniques were applied 

to a 768x576 pixel cutting tool image and results 

were compared in terms of image reconstruction 

Lifting compressed image – 0.9196 compression rate

PCA compressed image – 0.9190 compression rate

Figure 8: Compressed images for results shown 
in table 3
Source: The authors.

Lifting compressed image – 0.5972 compression rate

PCA compressed image – 0.5949 compression rate

Figure 7: Compressed images for results shown in 
table 2
Source: The authors.

Table 3: Results for values of compression rate of 
approximately 0.9190

Compressed 
Image through 

Lifting 

Compressed 
Image through 

PCA

Resolution
(pixel) 768x576 756x576

File format Int type Int type

Memory request
(bytes) – –

Memory request
(int type store 

unit)
35042 35280

Compression 
factor 0.0804 0.0810

Compression rate 0.9196 0.9190

PSNR (dB) 26.140 10.3605

Source: The authors.
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error: Mean Square Error (MSE) and Peak Signal-

to-Noise Ratio (PSNR). PCA technique presented 

the best values of PSNR with low compression 

rates. However, with high values of compression 

rates the lifting technique gave the highest PSNR. 

Despite the low PSNR, the PCA image compressed 

with compression rate of 0.9190 looks better than 

the Lifting one, as can be seen in Figure 8.

Here, the lifting transform was accomplished 

using the Daubechies 2 wavelet. Although there 

are other wavelet functions, recent results have 

shown that this wavelet function is the best one for 

this specific case (PEREIRA et al., 2009). Further 

works have been carried out applying both tech-

niques to a new set of cutting tool images. In these 

works, the quality of resulting compressed images 

will be evaluated regarding the maintenance of the 

principal features using a pattern recognition sys-

tem based on artificial intelligence techniques.
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