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Continuous grinding mill simulation using 
Austin’s model

Simulação da moagem contínua usando o modelo de Austin

Abstract

Comminution is a frequently-required step in mineral processing and is re-
sponsible for almost 90% of all energy consumption in a mineral processing 
plant. Tumbling mill design has been studied since the middle of the XIX 
century. There are many comminution models in the literature, with prepon-
derance, however, of Austin’s model (2002) for mineral impact breakage. 
In this paper, Austin’s model was applied to tubular tumbling mills. Once 
Austin’s model was proposed for batch processing of narrowly-distributed 
fraction sizes, an artifice has allowed it to be used in continuous grinding 
mill processes with widely-distributed fraction sizes. Interesting results were 
obtained with errors less than 0.005 for mills with sharp residence time 
distributions.
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Resumo

A etapa de cominuição é frequentemente requerida no processamento mi-
neral, sendo responsável por cerca de 90% do consumo energético de uma 
planta de processamento mineral. O dimensionamento de moinhos tubu-
lares revolventes é objeto de estudo desde meados do século XIX. Existem 
vários modelos para a cominuição disponíveis na literatura, com ênfase no 
modelo de Austin (2002) para a quebra mineral por impacto. No presente 
trabalho o modelo de Austin foi aplicado a moinhos tubulares revolventes. 
Uma vez que o modelo de Austin foi originalmente proposto para processos 
em batelada de estreita distribuição de tamanhos um artifício foi criado para 
permitir o seu uso em processos de moagem contínuos com amplas frações 
de tamanhos. Resultados interessantes foram obtidos com erros inferiores a 
0,005 para moagens realizadas com uma distribuição de tempos de residên-
cia aguda.

Palavras-chave: Cominuição. Moagem. Simulação. 
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1	 Introduction

According to Koka and Trass (1987), model-

ling of material breakage in mills is very useful for 

accurate design, operation and control of milling 

circuits. There has been tremendous progress in 

the development of models of the unit operation of 

size reduction, dealing with every type of grinding 

operation.

Essentially, these models are based on the 

fact that material breakage in mills is a rate pro-

cess and on the application of size/mass balances 

or population balances on particulate matter un-

dergoing size reduction. The models are formulat-

ed in terms of the breakage parameters, selection 

functions and cumulative breakage functions.

The high energy consumption by commi-

nution machinery associated with indispensable 

machines in many mineral processing routes have 

made grinding mills an intense object of study and 

research by both academic institutions and private 

initiative.

Fuerstenau et al. (2011) compared the break-

age kinetics and energetics of grinding coarse-

sized feed in the presence of deliberately-added 

fines for different material systems at different 

coarse/fine ratios. According to the authors, the 

initial breakage rate function of the coarse par-

ticles increases with increasing proportion of fines 

in the mixture. The fines produced and the coarse 

material retained on the top sieve were normaliz-

able with respect to the specific energy consumed 

by the coarse fractions.

In this paper, Austin’s model (2002), which 

was originally proposed only for batch process-

ing of narrowly-distributed fraction sizes, was 

adapted and tested for tubular tumbling mills us-

ing an artifice to allow it to be used in continuous 

processes. The results found were obtained with 

errors less than 0.005 for mills which a sharp resi-

dence time distribution.

2	 Material and methods

2.1	 Austin’s impact breakage 
model
Austin (2002) presented a set of thirteen 

equations (equations 1 to 13) which model re-

petitive breakage and can be used in an algorithm 

for calculating the apparent cumulative primary 

breakage (B). Consider feed particles of size xi im-

pacted with a specific impact energy E. The en-

ergy increment for each energy class is:

(1)

where N is the number of energy classes considered. 

The specific impact energy for energy class k is:

(2)

For any given size, the minimum specific im-

pact energy required to cause breakage is:

(3)

and the maximum specific impact energy required 

to give complete breakage is:

(4)

where A is a dimensionless material constant not 

dependent on particle size, and Ki (units of Ki are 

specific impact energy) was found to be dependent 

on particle size with the form:

(5)

where C and m are material constants. C has the 

physical meaning of minimum specific impact en-

ergy required to give breakage of any particles of 
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unit size x0. According to Yildirim et al. (1999), 

for dry grinding of high-purity quartz sand using 

ceramic balls as grinding medium, C should be 

0.103. Using instead ceramic cylinders, C should 

be 0.148; and, using pebbles, 0.0965.

According to Austin (2002), the mass frac-

tion of particles of size xi that breaks by fracture 

at a specific impact energy class k is:

(6)

since there can be no breakage of any size for the 

zero-energy class and no breakage out of the final 

“sink” size interval. Assuming that fragments of 

size i formed by breakage (progeny) have the same 

strength distribution as the size i tested (irrespec-

tive of whether their source is from strong or weak 

parent particles), the fraction of particles of size i 

that fracture over the energy range indexed by k is:

(7)

The size/mass/energy balance is:

(8)

where p’i,k is the mass fraction of material that ar-

rives in size i and energy class k that can be re-

broken (the sum of p’i,k is not equal to 1 because 

the same mass can be broken over and over again). 

The mass fraction of larger size t that appears in 

size interval i after primary fracture (bi,t) is:

(9)

where Bi,j is the mass fraction of material of larger 

size j that appears smaller than size xi after primary 

fracture. According to Austin and Luckie (1972) 

the values of Bi,j can be estimated from a size anal-

ysis of the product from short-time grinding of a 

starting mill load predominantly of size j (the one-

size fraction BII method) using the equation:

(10)

This is approximately correct for small de-

grees of repeated breakage products. Pi(t) is the 

weight fraction less than the upper size of size in-

terval i after grinding time t. The equation applies 

only if less than about 30% of size 1 is broken.

The sum of remaining fractions of unbroken 

material left in size i at each step is the final prod-

uct leaving the impact zone:

(11)

Cumulating from the smallest size to give the 

mass fraction less than size xi, one has the follow-

ing equation:

(12)
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Since some material in the single feed size 1 

may be unbroken (p1), the apparent cumulative 

primary breakage B values are:

(13)

2.2	 Specific impact energy 
calculation
In the absence of an appropriate experimen-

tal apparatus for the determination of the specific 

impact energy (E), a methodology proposed by 

Morrell (1992) for tumbling mills was adopted 

(equations 14 to 21). The total density of the tum-

bling mill load (t/m3) is:

(14)

where ρO is the ore density (t/m3), ρB is the ball 

density (t/m3), FB is the volume fraction of the tum-

bling mill occupied by the grinding media (balls 

including voids) and Ft is the volume fraction of 

the tumbling mill occupied by the ore, and by the 

grinding media balls (including voids). The angu-

lar displacement of the top position (in radians) is:

€ 

θS = 0.499f − 0.746( )+ 5.490f − 0.969( )Ft
(15)

where f is the fraction of the tumbling mill criti-

cal speed. The angular momentum of the bottom 

fraction (θT) is:

(16)

where the A1 parameter is:

(17)

The radial position of the surface of the load 

(ri) is:

(18)

where rm is the internal effective radius of the tum-

bling mill (in m). The power delivered to the tum-

bling mill load (in kW) is:

(19)

where g is the acceleration of gravity (m/s2) and L 

the effective length of the tumbling mill (m). The 

power delivered to the empty tumbling mill, des-

ignated by the term no-load (kW) is:

(20)

The gross power delivered to the tumbling 

mill (kW) is:

(21)

where FK is a correction factor equal to 1.22 for 

grating mills. In order to calculated the gross pow-

er delivered to the tumbling mill per ton of mate-

rial, the result of equation 21 was divided by the 

mass of material inside the tumbling mill.

2.3	 Adapting Austin’s model to 
widely-sized feed
In order to adapt Austin’s model to widely-

sized feed, the Population Balance Model (PBM) 

proposed has been changed. As proposed by 

Fuerstenau et al. (2011), the entire size range of 

particles is divided into intervals 1 to ‘n’ and a mass 

balance is performed over each size interval, i, over 

a time interval dt. The proposed model consists of 

a loop of Austin’s model execution. The number of 
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iterations is equal to the number of screens used, 

and each iteration product is the feed of the next 

iteration. The new approach comes from the fact 

that feeds need not be narrowly-sized.

3	 Results

The model was initially validated with a 

single-size distribution feed (batch grinding) 

with two different data sets: a literature data set 

(Austin, 2002) and experimental data obtained 

from the grinding of quartz sand and glass balls. 

Figure 1 shows the results for Bi,j from quartz 

sand and glass ball grinding (experimental) ver-

sus the model for batch grinding and a good 

agreement of the proposed model with two dif-

ferent cases of batch grinding, which indicates 

that Austin’s model (2002) is a good fit for this 

type of grinding process.

To test the applicability of the proposed 

model to tumbling mills with a wide-ranging 

size distribution of feed (continuous grinding), 

samples of 3.5 kg of quartz sand were separated 

to be used in a series of four grinding tests. The 

sample size distribution was determined by dry 

sieving. Figure 2 shows the size distribution of 

the quartz sand sample used before grinding 

(feed) and the products of the grindings (1, 4, 8 

and 16 minutes). The product of each grinding 

test was used as feed for the next one, and at the 

end of the four grinding tests the sample was 

ground during 29 minutes.

The operational characteristics of the grind-

ing tests were: 14.0 kg of steel balls 25 mm in 

diameter; tumbling mill with a diameter 20 cm, 

length of 20 cm, and rotational speed of 80 ± 3 

rpm. The experimental breakage matrix was de-

termined for each grinding test using the equation 

10, and the theoretical breakage function was cal-

culated using equations 1 to 13 (Austin, 2002). An 

(a)

(b)

Figure 1: Results of Bi,1 determination for quartz 
sand (a) and glass ball (b) batch grinding 
versus the model

Figure 2: Size distribution of the feed and 
products (for 1, 4, 8 and 16 minutes) of the 
quartz sand grinding
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error search and minimization algorithm was used 

to evaluate the model parameters using MathCad 

software version 6.0, and a sensitivity analysis of 

the evaluated parameters was performed to check 

the adherence of the parameters to the experimen-

tal breakage function (error less than 5 %). The 

constants obtained were: C = 3.000; m = 0.580; 

and A = 0.150. The specific impact energy was de-

termined using equations 14 to 21 (Morrell, 1992).

Figure 3 shows the results for Bi,j from 

quartz sand grinding (experimental) versus the 

model for continuous grinding. Figure 3a shows 

the results for 1 minute of grinding; 3b for 4 min-

utes; 3c for 8 minutes; and 3d for 16 minutes. 

Figure 3e shows the results for the average ex-

perimental value of Bi,j.

Figures 3a through 3d show fitness between 

the model and the experimental results. Although 

 (a)  (b)

 (c)  (d)

 (e)

Figure 3: Results of Bi,1 determination for quartz sands grinding versus the model: (a) 1 minute, (b) 4 
minute, (c) 8 minutes, (d) 16 minutes and (e) average
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the worst result has a correlation coefficient equal 

to 0.9922 (Figure 3a), which can be considered a 

good result, it is lower than the correlation coef-

ficient found for the batch grinding. When the re-

sults for continuous grinding simulation are con-

sidered as averages of results from the other four 

tests (Figure 3e) the fit is considerably better. This 

can be understood as a global breakage function, 

which applies for both the mill and the material. It 

should be noted that no adjustment was made of 

the theoretical breakage function in relation to the 

experimental breakage functions for the individu-

al times. A better fit will probably be achieved be-

tween the two breakage functions, but this would 

deviate from the proposed methodology.

4	 Conclusions

Although Austin’s model has been developed 

for impact comminution, it applies well to batch 

grinding in tumbling mills where impact and 

abrasion breakage mechanisms exist. The pro-

posed variation in the use of Austin’s model can 

be used in the simulation of continuous grind-

ing in tumbling mills since the range of residence 

time distribution in the tumbling mill is small. 

As the grinding tests were batch tests while the 

grinding operations are mostly conducted in con-

tinuous flow, the grinding time of this study rep-

resents the average residence time of particles in 

a tumbling mill.

In future work, we intend to validate the 

proposed model for other mineral species and for 

different grinding operational parameters, such as 

rotation, media and dimensions of the mill.
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