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Harmonic oscillations of a circular  
cylinder moving with constant velocity  

in a quiescent fluid

The flow around an oscillating circular cylinder which moves 
with constant velocity in a quiescent Newtonian fluid with 
constant properties is analyzed. The influences of the frequency 
and amplitude oscillation on the aerodynamic loads and on the 
Strouhal number are presented. For the numerical simulation, 
a cloud of discrete Lamb vortices are utilized. For each time 
step of the simulation, a number of discrete vortices are placed 
close to the body surface; the intensity of theirs is determined 
such as to satisfy the no-slip boundary condition.
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1  Introduction

Understanding and being able to analyze 

the flow around an oscillating body which moves 

with constant velocity in a quiescent fluid with 

constant properties is of great fundamental and 

practical importance in aero and hydrodynamics 

analysis. Oscillatory motions of small amplitude 

are important in the analysis of immerse vibrat-

ing bodies and special care should be taken in the 

lock-in condition. Large amplitude motions, on the 

other hand, are of relevance in the analysis of bod-

ies located in waves and currents such as the ones 

found in the offshore structures (WILLIAMSON; 

ROSHKO, 1988).

The oscillatory motion of small amplitude 

mainly modifies the near field changing the 

boundary layer flow and, as a consequence, hav-

ing an important effect on the aerodynamic forces 

and the pressure distribution. If the amplitude of 

the oscillatory motion is large one observes, addi-

tionally, substantial changes in the far field wake 

which can be of importance in the presence of 

other bodies or near by surfaces. 

This paper deals with the analysis of a body 

oscillating around a fixed position which is locat-

ed in an incoming uniform flow with constant ve-

locity; to simplify matters the oscillatory motion is 

restricted to heave. In previous works, Silva (2004) 

analyzed the same situation with the restriction of 

small amplitude of oscillation and Mustto et al. 

(1998) presented results for a rotating cylinder. 

A simpler approach to the present problem 

would consider a fixed body located in an oscil-

lating incoming flow; notice, however, that with 

this approach the whole fluid mass would oscillate 

with the same frequency and amplitude, which is 

not quite what, happens in real situations, mainly 

in the far field region.

For the numerical simulations a Lagrangian 

approach is used, more specifically the Vortex 

Method (CHORIN, 1973), (LEWIS, 1999), 

(KAMEMOTO, 1994, 2004), (SARPKAYA, 

1994), (HIRATA et al., 2003). In the Lagrangian 

discrete vortex method, the vorticity generated on 

the body surface is discretized and represented by 

a cloud of particles carrying vorticity. Lamb vor-

tices with a viscous core are used for that matter 

(MUSTTO et al., 1998).

Results for a circular cylinder fixed and heav-

ing in a uniform flow are presented and compared 

with results found in the literature; these are ex-

perimental results as well as results obtained using 

numerical simulations. It is important to mention 

that although the Reynolds number used in the 

simulations is high, no attempt to include turbu-

lence modeling (ALCÂNTARA PEREIRA et al., 

2002) was made. 

In the present simulations the integrated 

aerodynamic loads (such as lift and drag coeffi-

cient), the pressure distribution and the Strouhal 

number agree quite well with the experimental 

results when the cylinder is kept without oscilla-

tion. Due to the alternate vortex shedding the lift 

coefficient oscillates, around zero, during the nu-

merical simulation; the amplitude of the lift coef-

ficient oscillation is increased with the cylinder os-

cillation keeping, however, the mean value almost 

identically to zero.

It is also possible to identify three different 

types of flow regime as the cylinder oscillation 

frequency increases. The first type – Type I – is 

observed for low frequency range of the cylinder 

oscillation; in this situation the Strouhal number 

remains almost constant. Type I is followed by 

an intermediate range of frequency – Type II, the 

transition regime – where apparently the shedding 

frequency does not correlate to the frequency of 

the cylinder oscillation. Finally, in Type III – high 

frequency of cylinder oscillation – the vortex shed-

ding frequency is locked-in with the cylinder oscil-

lation frequency. 



Artigos

67Exacta, São Paulo, v. 6, n. 1, p. 65-74, jan./jun. 2008.

2  Problem definition and 
mathematical model

2.1 Definitions
Consider the incompressible flow (of a 

Newtonian fluid) around a moving body in a large 

two-dimensional domain. The body moves to the 

left with constant velocity; an oscillatory motion 

with finite amplitude A and constant angular ve-

locity w is added to body motion. 

This is represented, in Fig. 1, by a heaving 

cylinder immersed in a uniform incoming flow 

with velocity U. In this figure the (x, o, y) is the 

inertial frame of reference and the (X, O, Y) is 

the coordinate system fixed to the cylinder; this 

coordinate system oscillates around the x-axis as 

yo = Acos (wt).

The boundary S of the fluid domain is 

S = Sb ∪ S∞; being S∞ the far away boundary, 

which can be viewed as r =  → ∞, and Sb 

the body surface.

In the body fixed coordinate system, the sur-

face Sb is defined by the function 

Fb (X,Y) = Yb - h(X) = 0

(1)

Thus, in the inertial frame of reference 

Sb : Fb (x,y,t) = yb -[y0(t) + h(x)] = 0
(2)

and, for a symmetrical body

Fb (x,y,t) = yb - y0(t) ± h(x) = 0
(3) .

2.2 Governing equations
For an incompressible fluid flow the continu-

ity is written as

∇ · u = 0

(4)

where u ≡ (u, v) is the velocity vector.

If, in addition, the fluid is Newtonian with 

constant properties the momentum equation is 

represented by the Navier-Stokes equation as

(5)

Re stands for the Reynolds number defined 

as Re = bU
u

 where b = d = cylinder diameter. 

On the body surface the adherence condition 

has to be satisfied. This condition is better speci-

fied in terms of the normal and tangential compo-

nents as

(u · n) = (v · n)
(6)

on Sb, the impenetrability condition

(u · t) = (v · t)
(7)

on Sb, the no-slip condition

here n and t are unit normal and tangential vec-

tors, u is the fluid particle velocity and v is the 

body surface velocity.
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Figure 1: Problem definition
Source: the authors.
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Far from the body one assumes that the per-

turbation due to the oscillating body fades away, 

that is

|u| → 1
(8)

One should mention that the above boundary 

value problem was made non-dimensional using U 

and d as characteristic quantities.

3  The vortex method 

3.1 Viscous splitting algorithm and 
aerodynamics loads
Taking the curl of the Navier-Stokes equation 

and with some algebraic manipulations, one gets 

the vorticity equation which presents no pressure 

term. In two-dimensions, this equation reads

(9)

which is an scalar equation since w is the only 

component of the vorticity vector w = ∇×u. 

The left hand side of the above equation 

carries all the information needed for the con-

vection of vorticity while the right hand side 

governs the diffusion. Following Chorin (1973), 

we use the viscous splitting algorithm, which, 

for the same time step of the numerical simula-

tion, says that

Convection of vorticity is governed by

(10)

Diffusion of vorticity is governed by 

(11)

Having determined the vorticity field the 

pressure calculation starts with the Bernoulli 

function, defined by Uhlman (1992) as

(12)

Following Shintani and Akamatsu (1994), 

this function is then obtained using the following 

integral formulation

(13)

where H = 1 in the fluid domain, H = 0.5 on the 

boundaries and G is a fundamental solution of the 

Laplace equation, Alcântara Pereira et al. (2002).

3.2 Convection and diffusion  
of vorticity
For the numerical implementation, the vor-

ticity in the fluid domain is simulated by a cloud 

of Lamb vortices. 

For each time step of the simulation, a num-

ber of discrete vortices are generated on the body 

surface; the intensity of these newly generated vor-

tices is determined using the no-slip condition, see 

Eq. (7).

For the convection of the discrete vortices 

of the cloud, Eq. (10) is written in its Lagrangian 

form as

(14a)

(14b)

being i = 1, N; N is the number of vortices in the 

cloud. 
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A second order solution to this equation is giv-

en by the Adams-Bashforth formula (FERZIGER, 

1981)

(15a)

(15b)

The diffusion of vorticity is taken care of us-

ing the random walk method (LEWIS, 1991). The 

random displacement Zd ≡ (xd, yd) is defined as

(16a)

(16b)

Therefore the final displacement is written 

as

(17a)

(17b)

4  Numerical implementation

The u (i) and v (i) components of the velocity 

induced at the location of the (i) vortex can be 

written as

u(i) = ui(i) + uc(i) + uv(i)

(18a)

v(i) = vi(i) + vc(i) + vv(i)

(18b)

where: 

ui(i) ≡ [ui(i), vi(i)] is the incident flow velocity,

uc(i) ≡ [uc(i), vc(i)] is the velocity induced by the 

cylinder at the location of vortex (i),

uv(i) ≡ [uv(i), vv(i)] is the velocity induced at the 

vortex (i) by the other vortices of the cloud.

The ui(i) and uv(i) calculations present no prob-

lems and they follow the usual Vortex Method 

procedures; to the first approximation the same 

happens with the uc(i) when the body oscillation 

amplitude is small, see Silva (2004).

For large amplitude body oscillations, how-

ever, the body boundary conditions can not be 

transferred from the actual position to the mean 

position. As the body surface is simulated by NP 

straight line panels on which singularities are dis-

tributed (Panels Method) it is convenient to cal-

culate the body induced velocity in the moving 

coordinate system. For that one has to observe the 

following

– The fluid velocity on the body surface is 

written as

; with 

(19)

As a consequence of the j component of the 

right hand side of the fluid velocity (in the above 

expression) one gets an additional singularities 

distribution on the body surface. Of course, the 

induced velocity due to this additional singulari-

ties distribution fades away from the body.
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– The velocity induced by the body, according 

to the panel method calculations, is indicated by 

[uc(X,Y), vc(X,Y)]; this is the velocity induced at 

the vortex (i), located at the point [x(t), y(t)]; thus

uc(i) (x,y;t) = uc(X,Y;t)
(20a)

vc(i) (x,y;t) = vc(X,Y;t) + y
.
0(t)

(20b)

where the following relations remains

x(i) (t) = X
(21a)

y(i) (t) = y0(t) + Y
(21b)

The drag and lift coefficients can be ex-

pressed by (Ricci, 2002)

(22a)

(22b)

where ∆Sj is the panel length and θj represents the 

panel angle.

5  Results

We start presenting the results for a stand 

still circular cylinder immersed in a uniform flow. 

Table 1 shows the results for a circular cylinder, Re 

= 105. Line 1 (BLEVINS, 1984) are experimental 

results while line 2 (MUSTTO et al., 1998) and line 

3 (ALCÂNTARA PEREIRA et al., 2002) are nu-

merical results obtained using different implemen-

tation of the Vortex Method. The results presented 

in line 4, as well as all the other results presented 

elsewhere in this paper were obtained carrying 

out the simulations with M=50 sources panels to 

replace the cylinder surface and lasted for t = 40 

dimensionless time. In each time step, the nascent 

vortices were placed into the cloud through a dis-

placement ε=s0=0.0009b normal to the panels. As 

mention before, no attempt to include turbulence 

modeling (ALCÂNTARA PEREIRA et al., 2002) 

in the algorithm was made.

The numerical results represent average val-

ues calculated from t = 10 to t = 40 of the numeri-

cal simulation. As can be observed all the numeri-

cal obtained results are consistent with the ones 

obtained experimentally. The drag coefficient is 

about 1.2, while the lift coefficient is almost zero, 

as it should be. 

The Strouhal number, which measures the 

frequency of vortex shedding f, is defined as usual 

and, for future use a body Strouhal number is also 

defined

(23)

Figure 2 shows the pressure distribution on 

the cylinder surface. As can be noted the obtained 

values follows closely the ones obtained experi-

mentally; there are some small discrepancies from 

60o to 80o which probably could be reduced with 

a proper turbulence modeling. 

Table 1: Lift and drag coefficients and Strouhal 
number for a circular cylinder

Re = 105, A = 0 and w = 0 C
L

C
D

S
t

Blevins (1984) – 1.20 0.19

Mustto et al. (1998) – 1.22 0.22

Alcântara Pereira et al. (2002) 0.04 1.21 0.22

Present simulation 0.06 1.20 0.19

Source: The authors.
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Table 2 shows samples of results ob-

tained. CASE I are the results for a stand still 

cylinder, CASE II represents typical values 

for small amplitude (A=0.15) motions while 

CASE III refers to a large amplitude (A=0.5) 

motions. 

A significant range of the cylinder oscilla-

tion frequency is covered in this table. A care-

ful analysis of the Strouhal number (St) shows 

three different flow regimes. For low frequency 

of the body oscillation (low value of Stc) the St 

value is very close to 0.19, the stand still val-

ue for the Strouhal number. On the other ex-

treme, for high value o Stc, lock-in is observed 

and the vortex shedding frequency is equal to 

the body oscillation frequency. Between these 

two extreme there is a transition regime with 

no definite behavior could be observed; lock-in 

could be partially observed. This is particularly 

clear for large amplitude motions as illustrated 

in Figure 3.
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Figure 2: Comparison of the circular cylinder 
case, experimental and numerical results of Cp, 
for Re=105

Source: The authors.

Table 2: Circular cylinder: results for an oscillatory motion, Re = 105

CASE Amplitude
(A)

Angular Velocity

(w)
C

L
C

D
S
tc

S
t

I 0 0 0.06 1.20 0 0.19

II 0.15

0.02 0.0928 1.2572 0.00318 0.1912

0.05 0.0846 1.2054 0.00796 0.1901

0.1 0.0706 1.2270 0.01592 0.2128

0.2 -0.0430 1.2430 0.03183 0.2016

0.3 -0.0291 1.2049 0.04775 0.1961

0.4 0.0049 1.1622 0.06366 0.1947

0.6 -0.0256 1.0553 0.09549 0.1988

0.9 -0.0272 1.0080 0.14324 0.1399

1.2 0.0102 1.2988 0.19099 0.1908

1.5 0.0062 1.0211 0.23873 0.2395

III 0.5

0.02 0.0286 1.2360 0.00318 0,1968

0.05 0.1024 1.1635 0.00796 0,1950

0.1 0.0931 1.1953 0.01592 0,1980

0.2 0.0040 1.0997 0.03183 0,2051

0.4 0.0034 0.5936 0.06366 0,0766

0.6 0.1809 0.4512 0.09549 0,0948

0.9 0.0785 0.9328 0.14324 0,1435

1.2 0.0095 0.8443 0.19099 0,1876

1.5 0.1380 0.5499 0.23873 0,2410

Source: The authors.
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To better understand what is happening, 

let us start analyzing the flow behind a stand 

still cylinder. From each side of the symmetry 

line (x-axis passing through the cylinder center) 

large structures formed by clusters of point vor-

tices are shed alternately forming the Karmann 

vortex street. For low frequency of the body 

oscillation, the behavior is almost the same 

although the positions of the cluster shedding 

move according to the oscillation amplitude; 

this is shown in Figure 4.

For a heaving cylinder in the transition re-

gime, the wake structure becomes intermittent 

and the vortex clusters are shed irregularly from 

the cylinder.

For the lock-in regime a high strength clus-

ter of vortices just behind the cylinder is observed 

when it passes through the symmetry line; this sit-

uation is illustrated in Figure 7, when the cylinder 

is moving from top to bottom. This cluster – re-

ferred as the actual cluster – has a slow rotation in 

the anti-clockwise direction which decelerates the 

flow in the upper part of the cylinder and acceler-

ates the flow in the lower part; thus vorticity is fed 

into a new cluster, which has started to develop 

in the upper part, enhancing its strength. This 

newly developed cluster pushes the actual cluster 

and when the cylinder reaches its lower position it 

separates into the wake, see Figure 5. This figure 

shows the near field wake pattern at t = 15, when 

the cylinder is its lowest position. 

Of course, the opposite is observed when the 

cylinder is moving from its lower position to the 

upper position; Figure 6 shows the near field wake 

pattern at t = 23, when the cylinder is in its up-

permost position.

Figure 8 is assembled with the data from the 

same simulation used in the previous figure; it is 

presented to illustrate the lift coefficient behavior 

during the numerical simulation. As can be ob-

served, the lift coefficient oscillates with the same 

frequency of the body oscillation and its ampli-

tude can reach values as high as 1.5 to 2.0. In this 

figure, the black line is the cylinder motion and 

the blue one is the lift coefficient.

Figure 3: Strouhal number behavior as a function 
of the body oscillation frequency, Re = 105

Source: The authors.

Figure 4: Wake pattern when the body oscillates 
with small amplitude and low frequency, Re = 105

Source: The authors.

Figure 5: Cylinder in its lowest position (t = 15, 
when w = 1.5 and A = 0.5)
Source: The authors.
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The data from Table 2 also shows a reducing 

trend in the drag coefficient as the frequency of the 

cylinder oscillation increase. No solid explanation 

can be presented about this subject at this moment.

6  Conclusions

The three-dimensional effects present in the 

experiments are very important for the Reynolds 

number used in the simulations. Therefore a purely 

two-dimensional computation of the flow must 

produce differences in the comparison of the nu-

merical results with the experimental results. The 

differences encountered in the comparison of the 

computed values with the experimental results for 

the distribution of the mean pressure coefficient 

along the cylinder surface as shown in Figure 2 are 

attributed mainly to the inherent three-dimension-

ality of the real flow for such a value of the Reynolds 

number, which is not modeled in the simulation. 

The results for the pressure distribution indicated 

that there was a lack of resolution near the stagna-

tion point and the position of the separation point. 

The position of the separation point is predicted to 

occur at about 78°, whereas the experimental value 

(Blevins, 1984) is about 82°. This seems to indicate 

that a higher value of M would improve the resolu-

tion and probably produce a better simulation with 

respect to the pressure distribution. More investiga-

tions are needed and one can imagine that with the 

use of more panels (and therefore more free vortices 

in the cloud) the results tend to be in closer agree-

ment with the experiments.

Some discrepancies observed in the deter-

mination of the aerodynamics loads may be also 

attributed to errors in the treatment of vortex ele-

ment moving away from a solid surface. Because 

every vortex element has different strength of vor-

ticity, it will diffuse to different location in the 

flow field. It seems impossible that every vortex 

element will move to same ε-layer normal to the 

Figure 6: Cylinder in its uppermost position (t = 
25, when w = 1.5 and A = 0.5)
Source: The authors.

Figure 7: Center of the cylinder passing through 
the symmetry line in the downward motion (t = 
30, when w = 1.5 and A = 0.5)
Source: The authors.

Figure 8: Lift coefficient during the numerical 
simulation

Source: The authors.
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solid surface. In the present method all nascent 

vortices were placed into the cloud through a dis-

placement ε = s0 = 0.0009b normal to the panels.

The use of a fast summation scheme to de-

termine the vortex-induced velocity, such as the 

Multiple Expansion scheme, allows an increase in 

the number of vortices and a reduction of the time 

step, which increases the resolution of the simula-

tion, in addition to a reduction of the CPU time, 

which allows a longer simulation time to be carried 

out. The present calculation required 9 h of CPU 

time in an Intel(R) Pentium(R) 4 CPU 1700 MHz.

The sub-grid turbulence modeling is of signifi-

cant importance for the numerical simulation. The 

results of this analysis, taking into account the sub-

grid turbulence modeling, are also being generated 

and will be presented in due time, elsewhere.

Finally, despite the differences presented in 

this preliminary investigation, the results are prom-

ising, that encourages performing additional tests 

in order to explore the phenomena in more details.
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