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Classification of mammographic  
features using RBF-SA

We present in this work a new type of classes discriminator 
based upon nonlinear and combinational optimization tech-
niques: radial basis functions-simulated annealing (RBF-SA). 
The combinational optimization method is used here as a pre-
estimation of some parameters of the network classifier. We 
compare the classifier performance with and without pre-esti-
mation. For training the classifiers, adopting the leave-one-out 
procedure, we have used case examples such as mammographic 
masses (malignant and benign). The classifier is trained with 
shape factors and edge-sharpness measures extracted from 57 
regions of interest (ROI) (37 malignant and 20 benign), manu-
ally delineated, that describe mammographic masses and tumor 
features in terms of polygonal models for shape factors (com-
pactness [CC], Fourier description [FF], fractional concavity 
[FCC] and speculated index [SI]) and edge sharpness-acutance 
(A) . The classifier performance is compared in terms of the 
area under the receive operating characteristic (ROC) curve 
– (A). Higher values of A correspond to a better performance of 
classifier. Experiments with mammographic tumor and masses 
show that the best result of 0.9776 is obtained with RBF-SA 
when RBF parameters such as centers and spread matrix are 
pre-estimated, which is significantly better than the results 
obtained with no pre-estimation or only pre-estimation of the 
RBF centers, which are, 0.7071 and 0.9552 respectively.

Key words: Mammography. Neural networks. Optimization. 
Performance. Simulated annealing.
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1 Introduction

Radial base functions (RBF) as network 

classifier: the design of a classes discriminator 

can be viewed as solving optimization problem 

known in statistics as stochastic approximation. 

As far as this approach is concerned, the learn-

ing process is the same as finding a surface in 

a multidimensional space that provides the best 

adaptation of data used for training the classifier. 

On the other hand, the ability of generalization 

of the classifier is like using these multidimen-

sional surfaces to interpolate the data used for 

testing the classifier. These equivalences are the 

motivation of using RBF (HAYKIN, 1999) to 

design neural network that separates classes. In 

the context of the artificial neural network, the 

hidden layers provide a set of functions that con-

stitute the bases generators of a multidimensional 

space. These bases permit the representation of 

data connected to network input in the space 

generated on hidden layer (HAYKIN, 1999).

Broomhead and Lowe (1988) were the first 

researchers to explore the design of neural net-

work using RBF. Other works related to that 

kind of ensue are: Powell (1985), Moody and 

Darken (1989), Renals (1989) and Poggio and Gi-

rosi (1990). The architecture of a neural network 

implemented from the RBF has three distinct lay-

ers. The first layer is the place where the necessary 

data for training the network is connected. The 

second layer is a space that has high dimension 

when compared to the input layer dimension. The 

third layer is the output of the network. It is the 

place where the answers of the network are collect-

ed regarding the activations made by input data. 

The transformation between input and hidden 

layer space is nonlinear, while the transformation 

between hidden and output layer space is linear 

(COVER, 1965). It means that the classification of 

populations nonlinearly separable seems to be lin-

ear when the classification is made in a nonlinear 

multidimensional space (HAYKIN, 1999).

Nonlinear and linear methods of optimiza-

tion: the use of RBF as an artificial neural net-

works (ANN) (HAYKIN, 1999) classifier pro-

vides some useful properties and capabilities. The 

capability to separate samples that are not linearly 

separable is an important property of classifiers 

because most of the physical applications are 

based on nonlinear input information. However, a 

problem with any type ANN is their capability of 

generalization from a training set to a test set in a 

real application. Generalization can be influenced 

by the following factors:

•	 The architecture of the RBF (HAYKIN, 

1999);

•	 The complexity of the problem (LAU, 1991; 

HAYKIN, 1999);

•	 The size of the training set and how represen-

tative the set of the considered general popu-

lation data is (ESPÍRITO SANTO, 2005);

•	 The methods used to solve the optimization 

problem.

In this work, we propose a neural network 

classifier based upon RBF and two methods of 

solving optimizations problem: nonlinear optimi-

zation (Levenberg-Marquart [LM] [WILLIAM et 

al., 1992]) and combinatorial optimization (simu-

lated annealing [SA]) (KIRKPATRICK; GELATT; 

VECCHI, 1983). The proposed classifier (RBF-

SA) has only one stage, but the network training 

is carried out in two phases. In the first phase, 

pre-optimization, one or the entire parameters of 

the network is estimated using SA. In the second 

phase, final-optimization, all of the parameters 

are estimated by LM method. We explore the per-

formance of RBF-SA with different combination 

of methods of optimization and training proce-

dures. We have carried out experiments in mam-
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mographic in order to measure the capability of 

generalization of the proposed classifier in real ap-

plications.

Experiments in mammography: The aim 

of the experiments with mammography is to 

investigate the performance of RBF-SA in clas-

sifying masses as benign and malignant with 

edge-sharpness and shape. We describe experi-

ments and present its results in terms of the 

area under the receive operating characteristic 

(ROC) curve (METZ, 1986). The classifier is 

trained and tested with one database consisted 

of features extracted from 57 regions of inter-

est (ROI) (HILLARY; RANGAYYAN; DESAU-

TELS, 2003): shape factors (C, F, FCC and SI) 

and one edge-sharpness measures (A). In order 

to investigate the influence of two methods of 

optimizations upon classifier performance, we 

have made training with no pre-optimization 

and with pre-optimization of one and two RBF’s 

training parameters. We also have considered 

several values of structural RBF’s parameters 

during the training, which are conducted in a 

leave-one-out fashion (HAYKIN, 1999; KIRK-

PATRICK; GELATT; VECCHI, 1983).

2 	 Image databases and 
features

Images: In our simulations we use a database 

supplied by Departments of Electrical & Computer 

Engineering and Radiology, University of Calgary, 

Calgary (AB), Canada. The database is a result of 

mass and tumor analysis made in mammograms 

where 57 ROIs are extracted. In each ROI, masses 

and tumors where manually identified by drawing 

contours on mammograms, or by consulting ra-

diologist experienced in screening mammography 

(ANDRÉ; RANGAYYAN, 2003). From the total 

of 57 contours drawn (ROIs), 37 benign masses 

and 20 malignant tumors are identified. For each 

ROI, shape factors (C, F, FCC, SI) and acutance 

(A) (ANDRÉ; RANGAYYAN, 1990; ESPÍRITO 

SANTO, 2005) are computed.

Database: The present work does not di-

rectly manipulate mammograms. It uses a data-

base (DB) for training the classifier. DB are 57 

ROI (37 benign and 20 malignant) result from 

analysis of masses and tumors made in mam-

mograms where ROIs are manually identified 

and delimited by expert radiologists in mammo-

graphic application. As mentioned before, the 

information identified on mammogram is used 

to compute shape factors (C, F, FCC, and SI), 

and edge-sharpness measure (Acutance–A). To 

learn details about the ability of the proposed 

classifier in recognizing benign masses and ma-

lignant tumors when a diversity of features, 

representing multiple characteristics, is used, 

a combined analysis of all of the features is 

made. Training a classifier to characterize mass-

es and tumors with a combination of features 

(shape factor and edge-sharpness, for instance) 

is more advantageous than training them with 

shape or edge-sharpness alone (ANDRÉ; RAN-

GAYYAN, 2003). This approach, conducted in 

(STATISTICAL PACKAGE FOR THE SOCIAL 

SCIENCES INCORPORATION, 1990), reveals 

that shape factor of fractional concavity (FCC) 

and edge-sharpness feature of acutance (A) are 

meaningful features recommended to classify 

benign masses and malignant tumor. In addi-

tion to feature combination, the training with 

DB is also performed with leave-one-out pro-

cedure (KIRKPATRICK; GELATT; VECCHI, 

1983; HAYKIN, 1999).

Feature sets: In the pattern classification 

experiments, DB is arbitrary discriminated 

into the following features sets (ESPÍRITO 

SANTO, 2005):
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•	 S1: Three shape factors (FCC, C and SI) com-

puted from 57 ROI (37 benign and 20 malig-

nant).

•	 S2: Four shape factors (FCC, C, SI and FF) 

computed from 57 ROI (37 benign and 20 

malignant).

•	 S3: Four shape factors and edge-sharpness 

feature (FCC, C, SI, FF and A) computed from 

57 ROI (37 benign and 20 malignant).

3 	 The proposed RBF-SA 
method

The proposed RBF-SA method is a classifier 

that discriminates samples (in the present study, 

mammographic masses and tumors) as malignant 

or benign. The structural model of proposed clas-

sifier is an RBF’s network described as:

F(x) = 
N

s
i = 1

 wi [exp (- 1
2si

2
 ||x - xi||

2)] (1.0)

This network consists of a linear combina-

tion of multi-variant Gaussian functions with 

center xi and standard deviation σi. F (x) is the 

network output for a set of input xi (input layer); 

the exponential functions (RBF) are the hidden 

layer activation functions. Each wi is the synap-

tic weight connection between xi and the output 

layer via the RBF (HAYKIN, 1999), The training 

of this network consists of estimating the param-

eters xi, σi, and wi regarding the network input 

vector x.

There are different strategies of training. The 

choice of a particular type depends on how the 

centers of RBF are specified. Essentially there are 

three possibilities (HAYKIN, 1999):

•	 The centers are fixed and are selected in a 

random way;

•	 The centers are selves selected during the su-

pervised training;

•	 Supervised selection of the centers.

We introduce a new type of RBF’s network 

training where two systems of optimization ap-

proaches are used: nonlinear optimization and 

combinational optimization (HAYKIN, 1999). In 

this approach some network parameters are esti-

mated in two phases. In the first phase, up to two 

parameters of the network (xi and σI) are pre-op-

timized using a combinational optimization meth-

od, that is, SA algorithmic (WU, 1993; HAYKIN, 

1999). To implement the pre-optimization (pre-es-

timation) of xi and σI the following parameters are 

specified:

•	 T, temperature cooling schedule of the sys-

tem (KIRKPATRICK; GELATT; VECCHI, 

1983; HAYKIN, 1999);

•	 Fatordec, temperature decay factor (KIRK-

PATRICK; GELATT; VECCHI, 1983; 

HAYKIN, 1999);

•	 Itry, number of Metropolis-Monte Carlo 

attempt (KIRKPATRICK; GELATT; VEC-

CHI, 1983; HAYKIN, 1999);

•	 Boltzman criterion (KIRKPATRICK; 

GELATT; VECCHI, 1983; HAYKIN, 

1999).

Typical values used during the pre-optimization 

are:

•	 Fatordec = 0.01, 0.1 and 1 for, slow, moder-

ated and fast decay, respectively;

•	 Itry = 100, 150, 200 etc.

In the second phase, all of the network pa-

rameters (xi, σi, and wi), including those pre-opti-

mized in the first phase, are completely estimated 
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employing a nonlinear optimization approach, 

such as the LM method (WILLIAM et al., 1992).

4 	 Experiments and results

Several classification experiments were con-

ducted with up to three sets of features (S1, S2 and 

S3) and different training strategy with the pro-

posed classifier. In the first strategy, a RBF’s net-

work is trained only with LM method (WILLIAM 

et al., 1992) as parameters optimizer. In the second 

strategy, a RBF network was trained considering 

the algorithmic SA as a pre-estimation parameters 

stage and LM method as a complementary esti-

mation stage of RBF network parameters. From 

these strategy, where the proposed classifier is 

now named RBF-SA (KIRKPATRICK; GELATT; 

VECCHI, 1983), we investigate its performance 

in classifying benign and malignant features with 

only pre-estimation of the center of RBF and with 

pre-estimation of the center and spread matrix.

In order to analyze the influence of the num-

ber of features on the performance of RBF-SA, 

different combinations of FCC, C, SI, FF, and A, 

producing the S1, S2 and S3, were used during 

the training phase. The combinations studied are 

listed in Table 1.

The experiments conducted can be summa-

rized as follows:

•	 Train the classifier with the 57 available sets 

of values of FCC, C, SI, FF, and A, regarding 

different approach of optimization, using the 

classifier parameters as shown in Table 2. Re-

peat until the best performance is obtained 

(by trial and error), using the leave-one-

out procedure (KIRKPATRICK; GELATT; 

VECCHI, 1983; HAYKIN, 1999). Test the 

classifier with the same set of features used 

in the training phase.

•	 Evaluate the performance of the classifier by 

using the ROC curve. An ROC curve repre-

sents the variation of the true-positive frac-

tion (TPF) versus the false-positive fraction 

(FPF); the area under the ROC curve (AZ) 

may be used as a summarized measure of ac-

curacy (WOODS; BOWYER, 1997; KUPIN-

SKI; ANASTASIO, 1999).

Figure 1 shows the ROC curves obtained 

after training and testing the RBF-SA network 

with features set S2. The ROC curves, generated 

by using Rockit package (KURT ROSSMANN 

LABORATORIES FOR RADIOLOGIC IMAGE 

RESEARCH, 2006), shows the classifier perfor-

mance when only centers and both centers and 

spread matrix are pre-estimated. During the train-

ing phase, the value of the temperature Ti and pa-

rameter k are set to 4000 and 0.1, respectively. 

Table 1: Three sets of features used 
for training the RBF-SA network

Set Features

1 FCC, C and SI

2 FCC, C, SI and FF

3 FCC, C, SI, FF and A

Font: Authors.

Table 2: Results (area under the ROC curve AZ in 
classifying masses as benign or malignant) of 
RBF-SA using: Factordec = 0.1, total Metropolis-
Monte Carlo attempt for, respectively, centers 
and spread matrix pre-estimating (itry): 100 
and 50, k = 0.1, total cooling interaction = 50, 
Ti = 4, 000 and 3, 12-36, and 1 neurons in the 
input, hidden, and output layers, respectively.

Feature 
set

ROC: AZ → 
Optimization 

method: 
Only LM

ROC: AZ → Optimi-
zation method: SA 
(per-estimation of 
the centers) + LM 
(complementary 

estimation)

ROC: AZ → Opti-
mization method: 
SA (per-estimation 
of the centers and 

spread matrix) + LM 
(complementary 

estimation)

S1 0.7071 0.9558 0.9776

S2 0.6451 0.9296 0.9459

S3 0.5425 0.8758 0.9045

Font: Authors.
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The dimension of the space in the hidden layer 

(M) is 12, 16 and 20 for training with S1, S2 and 

S3, respectively. The parameter itry (Metropolis-

Monte Carlo attempt) has a maximum value of 

100 (center pre-estimation) and 50 (spread matrix 

pre-estimation). The highest classifications ac-

curacies (AZ = 0.9776, 0.9459 and 0.9045) were 

provided when the classifier was trained with a 

combined pre-estimation of the centers and spread 

matrix.

5 	 Discussion

Considering the curves plotted in Figure 1 

and the values of AZ shown in Table 2, the perfor-

mance of RBF-SA in classifying masses as benign 

or malignant using features like FCC, C, SI, FF, 

and A is improved when, at least, one RBF param-

eter is pre-estimated. As can be seen on Table 2, 

an increasing in classifier performance is observed 

from column one to column three. It means that 

good performance and pre-estimating goes on 

the same direction. Alto and others (apud HILL-

ARY; RANGAYYAN; DESAUTELS, 2003) have 

observed that classifying masses and tumors with 

a multiple features set is better than classifying 

them with a few ones. However, our experiments 

apparently show the opposite. We have had a drop 

in classifier performance as the trainings are con-

ducted from S1 to S3. Yet, such a poor classifier 

performance is a result of the fall of accuracy of 

SA algorithmic when the input space dimension 

is increased. Feature S1, S2 and S3 has dimen-

sions three, four and five, respectively. In order 

to maintain the same accuracy as it is of training 

with S1, a boost in the initial cooling temperature 

(Ti) or an elevation in the number of Metropolis-

Monte Carlo attempt should be done for each ad-

ditional feature. In our experiments Ti and other 

parameters from SA algorithmic are maintained 

constantly just because we are interest only in the 

effect of how sequential pre-estimations can affect 

the RBF-SA performance. However, good per-

formance in high input dimension is a matter of 

training parameter starts up. We made additional 

training with S3 (the worst performance printed 

out on Table 2) changing only the number of Me-

tropolis-Monte Carlo attempt to 500. In this case, 

results of AZ = 0.942 and 0.963 are respectively 

obtained for column two and three from Table 2.

Yet training under conditions as above tend 

to be very time consuming. For instance, to pro-

duce a RBF-SA performance, in terms of the area 

under the ROC, printed out in Table 2 (column 

two and three) a pre-estimating time of 8 hours is 

needed with S1 using Ti = 4000, 200 Metropolis-

Monte Carlo attempt, 50 cooling temperature and 

M = 12. However, to yield performances such as 

AZ = 0.942 and 0.963, as mentioned before, 300 

additional iterations are necessary. In this circum-

stance, the pre-estimating phase takes about 21 

hours.

The training parameters (k, T, M, factordec 

and itry) of the RBF-SA classifier are difficult to 

be determined in a systematic way. In our simu-

lations, these parameters were experimentally se-

With only pre-estimation 
of the centers

With a combined pre-
estimation of the centers 
and spread matrix
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Figure 1: ROC curves for RBF-SA with the 
features and parameters listed in Table 2

Font: Authors.



Artigos

323Exacta, São Paulo, v. 4, n. 2, p. 317-324, jul./dez. 2006.

lected. The performance of the classifier depends 

upon the combination of the values of these pa-

rameters and the pre-estimated phases.

As mentioned earlier, the RBF-SA method is 

not only sensitive to the initial values of the train-

ing parameters but also to the number of pre-es-

timated RFB parameters. Its performance when 

trained with set features S1 with pre-estimation 

of center and spread matrix (AZ = 0.9776) is bet-

ter than its performance without pre-estimation 

phases (AZ = 0.9556) or even without any SA opti-

mization (column one from Table 2).

6 	 Conclusion

We have presented preliminary results of an 

investigation on the use of RBF-SA as a classifier 

mammographic masses into benign or malignant 

using a combination of shape, edge-sharpness, and 

pre-estimation phases. High accuracies of 0.9558 

and 0.9776 in terms of the area under the ROC 

curve have been obtained and are comparable to 

each other to show the influence of pre-estimation 

on RBF-SA.
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