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A 3D contact investigation of rough surfaces 
considering elastoplasticity

In this work, the non-penetration condition and the interface 
models for contact, taking into account the surface microstruc-
ture, are investigated in detail. It is done using a homogeniza-
tion procedures presented by Bandeira, Wriggers and Pimenta 
(2001a), to obtain by numerical simulation the interface beha-
vior for the normal and tangential contact pressures, based on 
statistical surface models. The contact surfaces of both bodies 
are rough. This paper can be regarded as a complementary stu-
dy to that presented by Bandeira, Wriggers and Pimenta (2006). 
Here, the plasticity of the asperities is taken into account by 
assuming a constitutive equation based on an associated von 
Mises yield function formulated in principal axes. The plastic 
zones in the microstructure are shown to study in detail the 
contact interface. Numerical examples are selected to show the 
ability of the algorithm to represent interface law for rough 
surfaces, considering elastoplastic behaviour of the asperities.

Key words: Contact mechanics. Contact surface. 
Elastoplasticity. Interface constitutive equation. 
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1 Introduction

Several formulations concerning the treat-

ment of the contact interface have been presented 

in the literature, especially when the contact inter-

face of two contacting bodies is rough. Constitutive 

equations for the normal contact have been deve-

loped by investigating micromechanical beha-

vior within the contact surface. Associated mo-

dels have been developed based on experiments 

(GREENWOOD; WILLIAMSON, 1966; EVSEEV; 

MEDVEDEV; GRIGORIYAN, 1991; ZAVARISE; 

SCHREFLER; Wriggers, 1992; YOVANOVICH, 

1981; KRAGELSKY; DOBYCHIN; KOMBALOV, 

1982). In general, the micromechanical behavior 

depends on material parameters, like hardness, and 

on geometrical parameters, like surface roughness. 

It should be noted that the real micromechanical 

phenomena are extremely complex due to extreme-

ly high local pressure at the asperities. The model 

used in this paper attempts only to capture the most 

important phenomena and assume either elastic or 

plastic deformation of the asperities having real 

contact in the interface.

This article concentrates on the behavior of the 

contact interface. The idea is to study the interface 

behavior by modeling the contact surfaces, using a 

finite element discretization, to take into account the 

geometrical properties of the microstructure. The 

probabilistic theory is applied based on a statistical 

model of the micro geometry, like in the microsco-

pic contact mechanics developed by Greenwood and 

Williamson (1966), and by Wriggers and Vu Van 

and Stein (1990). Finally, a simple homogenization 

leads to a contact interface law.

A three-dimensional eight-node brick ele-

ment is used for the treatment of finite elastic-

plastic deformation of the contacting surfaces, 

(KARDESTUNCER; NORRIE, 1987). An aug-

mented Lagrangian method is applied to solve the 

frictional contact problems, because high-pres-

sures occur which cannot be treated adequately 

by standard penalty procedures (BERTSEKAS, 

1984, 1995; FLETCHER, 2000; LUENBERGER, 

1984; LAURSEN; MAKER, 1995; LAURSEN; 

SIMO, 1993a, 1993b; WRIGGERS; SIMO, 

1985; WRIGGERS; SIMO; TAYLOR, 1985; 

WRIGGERS; VU VAN; STEIN, 1990; 

WRIGGERS; ZAVARISE, 1993; HEEGAARD; 

CURNIER, 1993). The technique used to solve 

three-dimensional contact problems with friction, 

in finite deformations (CURNIER, 1984; TABOR, 

1981) was already developed and described in 

Bandeira, Wriggers and Pimenta (2001a, 2001b, 

2003, 2006); Simo and Laursen (1992); Wriggers 

(1995), Wriggers and Simo (1985); Wriggers, Simo 

and Taylor (1985); Wriggers, Vu Van and Stein 

(1990); Wriggers and Zavarise (1993); Alart and 

Curnier (1991); Oden and Pires (1983).

The finite element program is based on a 

C++ code, developed by Bandeira, Wriggers and 

Pimenta (2006). All numerical examples given are 

based on three-dimensional calculations. In the 

numerical examples, high-density meshes are used 

to represent the geometrical irregularity on the 

surfaces more precisely.

2 Constitutive equation for 
contact interface

Different approaches have been proposed 

to represent microscopic contact mechanisms. 

The available formulations are based either on 

curve fitting of experimental results or on theo-

retical analyses of microscopically rough surface 

(GREENWOOD; WILLIAMSON, 1966; EVSEEV; 

MEDVEDEV; GRIGORIYAN, 1991; ZAVARISE; 

SCHREFLER; WRIGGERS, 1992; KRAGELSKY; 

DOBYCHIN; KOMBALOV, 1982).

In this paper, the current normal approach gN 

is investigated in detail. It can be defined by
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gN = ξ - d
(2.1)

where ξ denotes the maximum initial asperities 

height and d the current mean plane distance. 

Thefigureal interpretation of equation (2.1) is 

illustrated in Figure 1.

The normal contact force FN is obtained as a 

product of the apparent pressure by the apparent 

contact area A, as follows:

FN = A · cN · (gN)2

(2.2)

where cN is defined by the penalty parameters of 

the augmented Lagrangian algorithmic. Following 

relationship correlates the current normal approa-

ch gN with the apparent mechanical pressure PN:

PN = cN · (gN)2

(2.3)

The mechanical constants mentioned in (2.2) 

depend on the micromechanics of the surface. This 

constitutive equation was presented in Zavarise, 

Schrefler and Wriggers (1992).

3 A simple homogenization 
method for contact interface

The basic aim of this paper is to derive cons-

titutive contact laws, as stated in Section 2, for a 

rough surface by using the finite element method. 

For this purpose, one has to model and discretize 

the rough surface and then, by homogenization 

procedures, to develop an interface law for con-

tact. This section summarizes the homogenization 

method leading to the contact interface laws. The 

interface law is obtained from numerical simula-

tion, using a model that consists of two deforma-

ble bodies in contact (Figure 2).

The contact surfaces of both bodies are rou-

gh. A representative surface at the contact interfa-

ce is represented by the Figure 3.

The procedure to find the associated interface 

law is performed in several steps. The bodies are 

discretized using standard hexahedral finite ele-

ments. One body is placed above another with ini-

tial distance to separate them. The inferior body is 

kept fixed in position and superior body is moved 

Figure 1: Physical approach on the contact 
interface (cross section) 
Source: Bandeira, 2004.

Figure 2: Model to obtain an interface law 
Source: Bandeira, 2004.

Figure 3: Contact surface with macroscopic 
asperities
Source: Bandeira, 2004.
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towards the inferior body by a displacement impo-

sed on the top surface A. The fixed block is defined 

as master body and one that is in motion is defined 

as slave body. The prescribed displacement is ap-

plied in several increments. In each increment, the 

resultant force RN at the top of superior body is cal-

culated by summing up the reaction forces RNk on 

the surface related to each node k. Then,

RN = ∑
k

RNk
(3.1)

The existence of a reaction force RN indicates 

the first contact between the bodies. The maximum 

initial asperities height ξ between the two middle 

planes, which are in contact, is determined at this 

step. See Figure 1 for the geometrical relations.

The normal contact force FN at the contact 

interface is obtained by taking into account the 

real contact area Ar. The actual contact occurs at 

n-discrete areas An on the discrete boundary Gn
c, as 

shown in Figure 4. This yields 

Ar = 
nc

∑
n = 1

 An 

when nc asperities are in contact.

The real contact pressure tNn occurs on the 

discrete contact surface Gn
c. The actual normal 

contact force FN is obtained by summing up the 

integrals of the real normal contact pressures tNn 

related to the discrete area An at each boundary 

Gn
c. Then:

FN = ∑
n 

∫Gn
c 
tNndAn

(3.2)

In general it is difficult to determine the 

actual discrete contact areas and to compute FN 

from (3.2). Here a different procedure is followed. 

Considering the equilibrium of the bodies, it is cle-

ar that the normal contact force developed at the 

interface is equal to the normal reactions develo-

ped at the top of superior body. Therefore, within 

the finite element treatment it is sufficient, instead 

of computing (3.2), to calculate the normal reac-

tion force RN. Hence:

FN = RN
(3.3)

The total contact force FN at the interface 

can be distributed on the apparent contact area A 

to yield a uniform apparent contact pressure, pN. 

Therefore, with equation (3.3),

PN = 
RN

A (3.4)

Since RN depends on the current mean plane 

distance d, the penetration law is displayed as

PN = PN (d)
(3.3)

At the end of each step, the current mean 

plane distance d, the total reaction force RN and 

the apparent contact pressure pN are calculated. 

The analysis ends when the current mean plane 

distance d goes to zero. The numerical results af-

ter homogenization yield a microscopic contact 

law analogous to the theoretical law, presented in 

Section 2. The homogenization is computed in ter-

ms of the average normal pressure pN. The plotted 

curve describes the penetration law relating the 

Figure 4: Contact interface (cross section) 
Source: Bandeira, 2004.
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apparent contact pressure pN to the current mean 

plane distance d. See equation (3.5).

The generation of the smoothen contact 

surfaces with Bézier interpolations (FARIN, 

1988), the procedures to obtain a statistical law 

and the techniques to obtain the maximum ini-

tial asperities height ξ for a generated surface 

were presented in detail in Bandeira, Wriggers 

and Pimenta (2001b).

4 Constitutive equation

The von Mises elastic-plastic constitutive law 

is based on the following multiplicative decompo-

sition of the deformation gradient:

F = FeFp

(4.1)

where the superscript e and p describe the elastic 

and the plastic part, respectively. The elastic loga-

rithmic strain tensor is given by

Ee = lnVe, where Ve = FeFeT)
1
2

(4.2)

the elastic left stretching tensor. The elasticity is 

described by the following strain energy function

y(Ee) = 1
2

 kj2 + m(Ee : Ee) 

(4.3)

where:

j = trEe and Ee = DevEe

(4.4)

that leads to the following Kirchhoff-Treftz 

stress tensor

S = DeEe, where De = kI  I + 2m(  - 1
3
I  I)

(4.5)

The logarithmic isotropic linear elastic ma-

terial simplifies the volumetric-isochoric splitting. 

Note also that (4.5) is similar to the expression of 

the small strain Hooke’s Law. The fourth-order 

tangent tensor is obtained from (4.5), as shown in 

detail in Pimenta (1992). 

For computational purposes, the classical ra-

dial return algorithm along with the von Mises 

plasticity; with linear isotropic hardening is sum-

marized below.

1) Trial step:
1. 

Ft
e = Fi+1Ui

p-1; Ct
e = Ft

eTFt
e

2. 
Ut

e = (Ct
e)1/2 = li

e ci
e  ci

e; ei = 1nli
e; Et = 1nUt

e 

3. 
Rt

e = Ft
eUt

e-1; bi
e = Rt

eci
e

4. 
jt = tr(Et); Et = Dev(Et)

5. 

St = 2mEt; s = 3
2

St : St
; Ft = st - sy (ai)

2) Radial return algorithm
if (Ft < 0) then
 elastic step:

 1. 

ai+1 = ai 

 2. 

Up
i+1 = Up

i 

 3. 

Si+1 = St 

 4. 
i+1 = 2m(  - 1

3
I  I)

else if (Ft ≥ 0) then
 elastic-plastic step:

 1.
Da = 

st - sy (ai)

3m + h
; ai+1 = ai + Da; sy (ai+1) = sy (ai) + hDa

 2.
DEP = Da 3

2st

 St ; DUP = eDEP; Fp
i+1 = DUPUP

i ; U
P
i+1 = (FpT

i+1 i+1Fp )
1
2
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 3.
Si+1 = syi+1

st

 St 

 4.

i+1 = 2m 
sy (ai+1)

st

 (  - 
1

3
I  I) + 

3m

s2
t

 + (
h

3m + h
 - 

sy (ai+1)

st

) St  St

3) add volumetric part
 1.

Si+1 = kjtI + Si+1

 2.
i+1 = kI  I + i+1

The assumed linear isotropic hardening used 

in this paper is presented in the Figure 5.

Its function behavior is defined as following:

sy(a) = syo + hep

(4.6)

where syo is the initial yield stress, a = ep is the 

equivalent plastic strain and h is the linear harden-

ing parameter.

5 Numerical simulation

In this section, three numerical examples are 

presented to obtain an interface law for rough 

surfaces numerically. In these examples two blo-

cks are considered in contact as shown in Figure 

6. This is done for three-dimensional bodies in 

contact. The homogenization method used was 

presented in Section 3. The Preconditioned Bi-

Conjugate Gradient Method (PBCG) is used to 

solve the linear equations system (PRESS, 1995). 

The PBCG method is used because it is more effi-

cient, spend less computer memory to allocate the 

matrixes and solve linear system with non-sym-

metrical matrixes. The elastic-plastic material law 

presented in Section 4 is used in all examples. It 

is important to mention that each numerical laws 

are statistically computed curves resulted by 20 

different random generated contact surfaces.

5.1 Example 1
In this first example, the number of mas-

ter and slave surfaces is around 2.403 elements, 

and the complete mesh is around 21.627 bricks 

elements. Each block has the same geometry of 

90mm×45mm×15mm and material properties 

defined by elasticity module of 70 GPa, Poisson 

coefficient of 0,3 and adopted initial yield stress 

of 200 MPa. The base of the master block is fixed 

and lateral displacements of both blocks are rele-

ased. The hardening parameters used is defined 

by h = E / 100. The contact surfaces are modified 

according to the theory presented (BANDEIRA; 

WRIGGERS; PIMENTA 2001), such that the ma-

ximum initial asperities height ξ is 0,563444 mm. 

A uniform displacement of 4 mm is prescribed at 

the top of the slave block in several increments. 

Each analysis ends when the current mean plane 

distance d approaches zero. The mean plane dis-

tance goes to zero in the 93th increment of load.

syo

s

h

1

eP

Figure 5: Constitutive equation for steel material 
– linear 
Source: Bandeira, 2006.

Figure 6: Contact with two deformable bodies 
Source: Bandeira, 2006.
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After all generated surfaces were analyzed, 

the mean value curve of the normal pressures is 

depicted (Graphic 1), which represents the consti-

tutive interface law for different hardness. 

The plastic zone developed at the master sur-

face can be analyzed in each increment of loads 

by the equivalent plastic strain, presented in the 

algorithmic for elastoplasticity stated in Section 4 

(see Figure 7).
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Graphic 1: Penetration behaviour 
Source: Bandeira, 2006.

Figure 7: Plastic zone of the master surface (αi parameter) 
Source: Bandeira, 2006.



116 Exacta, São Paulo, v. 6, n. 1, p. 109-118, jan./jun. 2008.

5.1 Example 2
The second example is the same of the first 

one. The differences are that the maximum ini-

tial asperities height ξ is 0,180394 mm, and the 

load consists of a uniform displacement of 8 mm 

prescribed at the top of the slave block in several 

increments. Each analysis ends when the current 

mean plane distance d approaches zero. The mean 

plane distance goes to zero in the 35th increment of 

loads. After all generated surfaces were analyzed, 

the mean value curve of the normal pressures is 

depicted in Graphic 2, which represents the cons-

titutive interface law for different hardness. 

The plastic zone developed at the master sur-

face can be analyzed in each increment of loads by 

the equivalent plastic strain (Figure 9).

5.1 Example 3
The last example has the same discretiza-

tion of the first one. The difference is that the 

maximum initial asperity height ξ is 0,226265 

mm and the applied load is done in two steps. 

A uniform displacement of 0,24 mm is prescri-

bed at the top of the slave block in several in-

crements in the vertical direction. Each analy-

sis ends when the current mean plane distance 

d approaches zero. The mean plane distance 

goes to zero in the 35th increment of load. After 

that, another increment of load, of 0,10 mm, is 

applied in the tangential direction, paralleled 

Figure 9: Plastic zone of the master surface (ai parameter) 
Source: Bandeira, 2008. 
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Graphic 2: Penetration behaviour 
 Source: Bandeira, 2006.
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to the face of 90 mm, in thirty increments. The 

penalty parameters used for the normal direc-

tion is around 105 and for the tangential direc-

tion is around 5×104. The friction coefficient is 

0,20. After this analysis, the mean value curve 

of the normal pressures is depicted in Graphic 

11, which represents the constitutive interface 

law for different hardness. 

In this analysis the normal and tangential 

pressures are plotted over the displacement in each 

increment of load. The contact surfaces are smoo-

th that makes the pressure very sensitive regarding 

the hardness. The normal and the tangential pres-

sures behaviour are presented in Graphic 12a and 

12b, respectively.

6 Final considerations

This work can be regarded as a complementa-

ry study of Bandeira et al. (2006). In that paper, the 

plasticity of the asperities is taken into account by 

assuming a constitutive equation based on associa-

ted von Mises yield function formulated in principal 

axes. The authors can concluded that is possible to 

modeling the micromechanical phenomena develo-

ped at the contact surfaces and obtained results for 

constitutive equations derived by numerical simu-

lations with good agreements with the theoretical 

laws. In the numerical examples, the normal and 

tangential contact pressures are plotted to show the 

contact surfaces behaviour. The plasticity evolution 

developed at the contact surfaces are also presen-

ted in the numerical results. It can be seen that the 

contact surfaces developed high plasticity effects 

during the contact mechanics.
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