Proposta de um modelo computacional para alocação de recursos humanos em múltiplos projetos

Renato Penha, Cristina Dai Prá Martens, Claudia Terezinha Kniess

Resumo


A restrição no processo de alocação de recursos humanos nas atividades de projetos resulta no tradicional problema da área de gestão de projetos com mais de 40 anos de existência – o Resource-Constrained Project Scheduling Problem. O desafio está em estabelecer a melhor relação de alocação entre um recurso humano nas diversas atividades em um ambiente de múltiplos projetos, mediante as inúmeras restrições presentes nas empresas de diferentes setores. Neste cenário, o objetivo deste trabalho é elaborar um modelo computacional baseado em arquitetura orientada a serviços no processo de alocação de recursos humanos em projetos de Tecnologia da Informação. O estudo é de origem qualitativa exploratória e, para a elaboração do modelo, foram realizadas pesquisas em base de dados acadêmica e de patentes de domínio público para escolha do modelo matemático mais aderente às possíveis soluções dos problemas causados pelo Resource-Constrained Project Scheduling Problem. Os resultados demonstram que o modelo computacional proposto pode contribuir na redução do tempo gasto pelos gestores no processo de elaboração do cronograma, na contenção do custo e prazo dos projetos com impactos do Resource-Constrained Project Scheduling Problem, além de ser utilizado como apoio às ferramentas de auxílio ao desenvolvimento de cronogramas, como o Microsoft Project, o Primavera e o Open Project.


Palavras-chave


Resource-Constrained Project Scheduling Problem; Gestão de Projetos; Alocação de Recursos.

Texto completo:

PDF

Referências


Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development methods: Review and analysis. arXiv preprint arXiv:1709.08439.

Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38(1), 44-50.

Akers, S. B. (1956). A graphical approach to production scheduling problems. Oper. Res., 4(2), 244-245.

Alam, K. A., Ahmad, R., Akhunzada, A., Nasir, M. H. N. M., & Khan, S. U. (2015). Impact analysis and change propagation in service-oriented enterprises: A systematic review. Information Systems, 54, 43-73.

Arkhipov, D., Battaïa, O., & Lazarev, A. (2019). An efficient pseudo-polynomial algorithm for finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem. European Journal of Operational Research, 275(1), 35-44.

Artto, K. A., Martinsuo, M., & Aalto, T. (2013). Project portfolio management: Strategic management through projects. Project Management Association Finland.

Barbosa, E. F. (1998). Instrumentos de coleta de dados em pesquisas educacionais. Educativa, out.

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 5(1), 11-24.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European journal of operational research, 112(1), 3-41.

Carvalho, M. M., Rabechini Jr, R., Paula Pessôa, M. S., & Laurindo, F. J. B. (2005). Equivalência e completeza: análise de dois modelos de maturidade em gestão de projetos. Revista de Administração-RAUSP,(3), 289-300.

Cheng, P. C., & Barone, R. (2017). Representing complex problems: A representational epistemic approach. In Learning to solve complex scientific problems (pp. 97-130). Routledge.

Clement, S. J., McKee, D. W., & Xu, J. (2017). Service-oriented reference architecture for smart cities. In 2017 IEEE symposium on service-oriented system engineering (SOSE)(pp. 81-85). IEEE.

Chand, S., Singh, H., & Ray, T. (2019). Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions. Swarm and evolutionary computation, 44, 897-912.

Condotta, A., Knust, S., Meier, D., & Shakhlevich, N. V. (2013). Tabu search and lower bounds for a combined production–transportation problem. Computers & Operations Research, 40(3), 886-900.

Cooper, D. R., Schindler, P. S. (2016). Métodos de pesquisa em administração. Porto Alegre: Bookman.

Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (2001). Portfolio management for new products. Basic Books.

Dantas Filho, E., & Gomes, M. J. N. (2015). Modelos para Alocação de Recursos Humanos de Diferentes Perfis em Projetos de TI. Revista de Gestão e Projetos-GeP, 6(1), 63-78.

Fairley, R. (1994). Risk management for software projects. IEEE software,11(3), 57.

Flyvbjerg, B., & Budzier, A. (2011). Why your IT project may be riskier than you think. Harvard Business Review, 89(9), 601-603.

Habibi, F., Barzinpour, F., & Sadjadi, S. (2018). Resource-constrained project scheduling problem: review of past and recent developments. Journal of project management, 3(2), 55-88.

Hamzehloui, M. S., Sahibuddin, S., & Ashabi, A. (2019). A Study on the Most Prominent Areas of Research in Microservices. International Journal of Machine Learning and Computing, 9(2).

Hartmann, S. (2013). Project scheduling with resource capacities and requests varying with time: a case study. Flexible Services and Manufacturing Journal, 25(1-2), 74-93.

Hartmann, S. (2015). Time-varying resource requirements and capacities. In Handbook on Project Management and Scheduling Vol. 1 (pp. 163-176). Springer, Cham.

Ho, K. C. (2005). Technological development of Hong Kong textile and clothing industry: A ‘technometric’approach(Doctoral dissertation, Hong Kong Polytechnic University (Hong Kong)).

Ichihara, J. D. A. (2002). Problema de programação de projetos com restrição de recursos (resource-constrained project scheduling problem). ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇAO, 22.

Kadri, R. L., & Boctor, F. F. (2018). An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case. European Journal of Operational Research, 265(2), 454-462.

Kannimuthu, M., Raphael, B., Palaneeswaran, E., & Kuppuswamy, A. (2019). Optimizing time, cost and quality in multi-mode resource-constrained project scheduling. Built Environment Project and Asset Management, 9(1), 44-63.

Keelling, R. (2006). Gestão de projetos: uma abordagem global. In Gestão de projetos: uma abordagem global.

Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 13, 347-365.

Kerzner, H. (2016). Gestão de Projetos-: As Melhores Práticas. Bookman Editora.

Kidder, L. H. (1987). Métodos de pesquisa nas relações sociais. São Paulo: EPU, 2, 15-48.

Kurtulus, I. S., & Narula, S. C. (1985). Multi-project scheduling: Analysis of project performance. IIE transactions, 17(1), 58-66.

Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1977). Job-shop scheduling by implicit enumeration. Management Science, 24(4), 441-450.

Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618.

Li, K., Xiao, W., & Yang, S. L. (2019). Scheduling uniform manufacturing resources via the Internet: A review. Journal of Manufacturing Systems, 50, 247-262.

Li, F., & Xu, Z. (2018). A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PloS one, 13(10), e0205445.

Majchrowicz, B., & Wierzchoń, M. (2018). Unexpected action outcomes produce enhanced temporal binding but diminished judgement of agency. Consciousness and cognition, 65, 310-324.

Münscher, R., Vetter, M., & Scheuerle, T. (2016). A review and taxonomy of choice architecture techniques. Journal of Behavioral Decision Making, 29(5), 511-524.

Minayo, M. C. S. (2011). Pesquisa social: teoria, método e criatividade. Editora Vozes Limitada.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714-729.

Mohanty, R. U., & Siddiq, M. K. (1989). Multiple projects-multiple resources-constrained scheduling: some studies. The International Journal of Production Research, 27(2), 261-280.

Moynihan, T. (1997). How experienced project managers assess risk. IEEE software, 14(3), 35-41.

Moreira, J. R. P., & Silva, P. C. D. (2013). It management model for financial report issuance and regulatory and legal compliance. JISTEM-Journal of Information Systems and Technology Management, 10(3), 597-620.

Noori, S., & Taghizadeh, K. (2018). Multi-Mode Resource Constrained Project Scheduling Problem: A Survey of Variants, Extensions, and Methods. International Journal of Industrial Engineering & Production Research, 29(3), 293-320.

Osei-Kyei, R., & Chan, A. P. (2015). Review of studies on the Critical Success Factors for Public–Private Partnership (PPP) projects from 1990 to 2013. International Journal of Project Management, 33(6), 1335-1346.

Pacheco, R. F., & Santoro, M. C. (1999). Proposta de Classificação Hierarquizada dos Modelos de Solução para o Problema de Job Shop Scheduling. GESTÃO E PRODUÇÃO, Revista do Departamento de Engenharia de Produção, Universidade de São Carlos, 1-15.

Palacios, J. J., González, M. A., Vela, C. R., González-Rodríguez, I., & Puente, J. (2015). Genetic tabu search for the fuzzy flexible job shop problem. Computers & Operations Research, 54, 74-89.

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth International Conference on (pp. 3-12). IEEE.

PatentScope. (2018). Disponível em: . Acesso em: 24 de março de 2018.

Penha, R., de Camargo Guerrazzi, L. A., de Andrade, D. C. T., & Cintra, R. F. (2017). Produção Científica sobre Resource-Constrained Project Scheduling Problem: Um Estudo Bibliométrico e Bibliográfico. Revista de Gestão e Projetos-GeP, 8(2), 71-86.

Penha, R., Kniess, C. T., Bergmann, D. R., & Biancolino, C. A. (2012). Avaliação de modelos matemáticos para resolução de Job Shop Problem com utilização de recursos humanos especialistas em projetos. Revista de Ciências da Administração, 14(34), 118-130.

Penha, R., Kniess, C. T., Bergman, D. R., & Biancolino, C. A. (2014). Emprego de Técnicas de Gerenciamento de Riscos Técnicos em uma Empresa de Desenvolvimento de SoftwareSoftwares. Revista Gestão e Tecnologia, 14, 151-173.

Penha, R., Kniess, C. T., & Quoniam, L. (2016). O uso de informações de patentes para identificar modelos matemáticos utilizados para o tratamento de Job Shop Problem. Revista PRISMA. COM, (29).

Plekhanova, V. (2018). A Capability and Compatibility Approach to Modelling of Information Reuse and Integration for Innovation. In International Conference on Emerging Internetworking, Data & Web Technologies (pp. 383-393). Springer, Cham.

Pressman, R., & Maxim, B. (2016). Engenharia de Software-8ª Edição. McGraw Hill Brasil.

Project management institute [PMI]. (2017). Guide to the project Management body of knowledge - Sixth Edition. Project Management Institute, Pennsylvania USA.

Quoniam, L., Kniess, C. T., & Mazzieri, M. R. (2014). A patente como objeto de pesquisa em Ciências da Informação e Comunicação. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, 19(39), 243-268.

Sabar, N. R., Turky, A., & Song, A. (2018). A genetic programming based iterated local search for software project scheduling. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1364-1370). ACM.

Santos Rocha, R., & Fantinato, M. (2013). The use of softwares product lines for business process management: A systematic literature review. Information and Software Technology, 55(8), 1355-1373.

Standish Group. (2017). The Chaos Report.Disponível em: . Acesso em: 10 de março de 2017.

Theóphilo, C. R., & Martins, G. D. A. (2009). Metodologia da investigação científica para ciências sociais aplicadas. São Paulo: Atlas, 2, 104-119.

Todorović, M. L., Petrović, D. Č., Mihić, M. M., Obradović, V. L., & Bushuyev, S. D. (2015). Project success analysis framework: A knowledge-based approach in project management. International Journal of Project Management, 33(4), 772-783.

Van Den Eeckhout, M., Maenhout, B., & Vanhoucke, M. (2019). A heuristic procedure to solve the project staffing problem with discrete time/resource trade-offs and personnel scheduling constraints. Computers & Operations Research, 101, 144-161.

Vanti, N. A. P. (2002) Da bibliometria à webometria: uma exploração conceitual dos mecanismos utilizados para medir o registro da informação e a difusão do conhecimento. Ciência da Informação, v.31, n.2, p. 152-162.

Yeap, T., Loo, G. H., & Pang, S. (2003). Computational patent mapping: intelligent agents for nanotechnology. In IEEE Proceedings of International Conference on MEMS, NANO and smart systems (pp. 274-278).




DOI: https://doi.org/10.5585/gep.v10i3.14831

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista de Gestão e Projetos

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

GeP – Revista Gestão e Projetos
ISSN da versão eletronica: 2236-0972
www.revistagep.org