Proposta de framework ágil para integrar a Inteligência Artificial (IA) no setor varejista
DOI:
https://doi.org/10.5585/2025.28671Palavras-chave:
Inteligência Artificial, IA, frameworks, varejo, automação, personalizaçãoResumo
Este estudo visa propor um framework ágil para integrar a Inteligência Artificial (IA) no setor varejista, abordando aspectos estratégicos, operacionais e mercadológicos. Utilizando a metodologia Gemba, combinada com entrevistas semiestruturadas e questionários prévios enviados a executivos da organização, abordando o uso de IA, a integração físico-digital e os desafios na implementação de tecnologias emergentes, o trabalho identifica oportunidades de melhoria e personalização por meio da observação prática e análise detalhada dos processos organizacionais. Como resultado, o framework proposto apresenta um roteiro estruturado que contempla a integração de dados, automação de processos e a personalização de experiências do cliente. Os resultados esperados incluem maior eficiência operacional, alinhamento estratégico e melhor experiência do consumidor, configurando uma solução replicável para empresas que enfrentam desafios similares.
Downloads
Referências
Adulyasak, Y., Cohen, M. C., Khern-Am-Nuai, W., & Krause, M. (2024). Retail analytics in the new normal: The influence of artificial intelligence and the Covid-19 pandemic. *IEEE Engineering Management Review, 52*(1), 268–280. https://doi.org/10.1109/EMR.2023.3337415
Alizamir, S., Bandara, K., Eshragh, A., & Iravani, F. (2022). A hybrid statistical-machine learning approach for analysing online customer behavior: An empirical study. https://doi.org/10.48550/arXiv.2212.02255
Antonenko, P. D. (2015). The instrumental value of conceptual frameworks in educational technology research. Educational Technology Research and Development, 63(1), 53–71. https://doi.org/10.1007/s11423-014-9363-4
Barenkamp, M., Rebstadt, J., & Thomas, O. (2020). Applications of AI in classical software engineering. AI Perspectives, 2(1), 1. https://doi.org/10.1186/s42467-020-00005-4
Behera, R. K., Bala, P. K., Rana, N. P., Algharabat, R., & Kumar, K. (2024). Transforming customer engagement with artificial intelligence E-marketing: An E-retailer perspective in the era of retail 4.0. Marketing Intelligence & Planning, 42(7), 1141-1168. https://doi.org/10.1108/MIP-04-2023-0145
Borrett, D. S., Sampson, H., & Cavoukian, A. (2017). Research ethics by design: A collaborative research design proposal. Research Ethics, 13(2), 84–91. https://doi.org/10.1177/1747016116673135
Boza, P., & Evgeniou, T. (2021). Implementing Ai Principles: Frameworks, Processes, and Tools (SSRN Scholarly Paper 3783124). Social Science Research Network. https://doi.org/10.2139/ssrn.3783124
Chakraborty, D. U. (2020). Building Blocks of an AI Framework for an Enterprise (SSRN Scholarly Paper 3751420). Social Science Research Network. https://doi.org/10.2139/ssrn.3751420
Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/j.techsoc.2020.101257
Dale, M., Krumdieck, S., & Bodger, P. (2012). Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology. Ecological Economics, 73, 158–167. https://doi.org/10.1016/j.ecolecon.2011.10.028
DeJonckheere, M., & Vaughn, L. M. (2019). Semistructured interviewing in primary care research: A balance of relationship and rigour. Family Medicine and Community Health, 7(2). https://doi.org/10.1136/fmch-2018-000057
Donnelly, D.-L. (2022). ‘Privacy by Design’ in the Eu General Data Protection Regulation: A New Privacy Standard or the Emperor’s New Clothes?. South African Law Journal, 139(3), 541–576. https://doi.org/10.47348/SALJ/v139/i3a4
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., ... Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Fu, H.-P., Chang, T.-H., Lin, S.-W., Teng, Y.-H., & Huang, Y.-Z. (2023). Evaluation and adoption of artificial intelligence in the retail industry. International Journal of Retail & Distribution Management, 51(6), 773-790. https://doi.org/10.1108/IJRDM-12-2021-0610
Gupta, A., Su, B., & Walter, Z. (2004). An Empirical Study of Consumer Switching from Traditional to Electronic Channels: A Purchase-Decision Process Perspective. International Journal of Electronic Commerce, 8(3), 131–161. https://doi.org/10.1080/10864415.2004.11044302
Hickman, E., & Petrin, M. (2021). Trustworthy AI and Corporate Governance: The EU’s Ethics Guidelines for Trustworthy Artificial Intelligence from a Company Law Perspective. European Business Organization Law Review, 22(4), 593–625. https://doi.org/10.1007/s40804-021-00224-0
Hossain, M. A., Akter, S., Yanamandram, V., & Gunasekaran, A. (2022). Operationalizing Artificial Intelligence-Enabled Customer Analytics Capability in Retailing. Journal of Global Information Management (JGIM), 30(8), 1–23. https://doi.org/10.4018/JGIM.298992
Hossam, A., Ramadan, A., Magdy, M., Abdelwahab, R., Ashraf, S., & Mohamed, Z. (2024). Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI (arXiv:2405.00023). arXiv. https://doi.org/10.48550/arXiv.2405.00023
Huang, M.-H., & Rust, R. T. (2021). A framework for collaborative artificial intelligence in marketing. Journal of Retailing, 98(2), 209-223. https://doi.org/10.1016/j.jretai.2021.03.001
Iryani, I., & Yulianto, H. (2023). Artificial Intelligence (AI) of Financial in the VUCA Era: A Systematic Mapping Study. Journal of Computer Networks, Architecture and High Performance Computing, 5(2), Artigo 2. https://doi.org/10.47709/cnahpc.v5i2.2201
Isaac, M. G. (2023). Which Concept of Concept for Conceptual Engineering? Erkenntnis, 88(5), 2145–2169. https://doi.org/10.1007/s10670-021-00447-0
Ježová, D. (2020). Principle of Privacy by Design and Privacy by Default. Em M. Reljanović (Org.), Regional Law Review (p. 127–139). Institute of Comparative Law ; University of Pécs Faculty of Law ; Josip Juraj Strossmayer University of Osijek, Faculty of Law. https://doi.org/10.18485/iup_rlr.2020.ch10
Jutel, M., Zemelka-Wiacek, M., Ordak, M., Pfaar, O., Eiwegger, T., Rechenmacher, M., & Akdis, C. A. (2023). The artificial intelligence (AI) revolution: How important for scientific work and its reliable sharing. Allergy, 78(8), 2085–2088. https://doi.org/10.1111/all.15778
Kallio, H., Pietilä, A., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: Developing a framework for a qualitative semi‐structured interview guide. Journal of Advanced Nursing, 72(12), 2954–2965. https://doi.org/10.1111/jan.13031
Lee, Y.-I., & Trim, P. R. J. (2022). Enhancing Marketing Provision through Increased Online Safety That Imbues Consumer Confidence: Coupling AI and ML with the AIDA Model. Big Data and Cognitive Computing, 6(3), Artigo 3. https://doi.org/10.3390/bdcc6030078
Melo, V. (2024, agosto 1). Inteligência Artificial no Varejo: Aplicações e tendências de IA. Geofusion - Soluções em Inteligência Geográfica. https://geofusion.com.br/blog/inteligencia-artificial-no-varejo/
Oosthuizen, K., Botha, E., Robertson, J., & Montecchi, M. (2021). Artificial intelligence in retail: The AI-enabled value chain. Australasian Marketing Journal, 29(3), 264–273. https://doi.org/10.1016/j.ausmj.2020.07.007
Piteira, M., Aparicio, M., & Costa, C. J. (2019). A ética na inteligência artificial: Desafios. A ética na inteligência artificial: Desafios. https://doi.org/10.23919/CISTI.2019.8760826
Recio-Román, A., Recio-Menéndez, M., & Román-González, M. V. (2024). The future of retail: Harnessing generative AI for disruptive innovation and sector transformation. In *Reshaping marketing science in wholesaling and retailing* (pp. 309–333). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6145-0.ch013
Sherif, A. M. (2019). Enhancing Change Management at University Education Institutions in Egypt in the Light of Gemba Kaizen Model: A Qualitative Study = تطوير إدارة التغيير في الجامعات المصرية في ضوء استخدام : نموذج جمبا كايزن. Journal of the Association of Arab Universities, 79(7883), 1–18. https://doi.org/10.12816/0053043
Suárez‐Barraza, M. F., Ramis‐Pujol, J., & Estrada‐Robles, M. (2012). Applying Gemba‐Kaizen in a multinational food company: A process innovation framework. International Journal of Quality and Service Sciences, 4(1), 27–50. https://doi.org/10.1108/17566691211219715
Verma, A. (2020). Consumer behaviour in retail: Next logical purchase using deep neural network. https://doi.org/10.48550/arXiv.2010.06952
Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
Wang, Q. (2024). The Transformative Role of AI and Machine Learning in Retail: Enhancing Consumer Experience and Engagement - A Case Study of Morrisons. Highlights in Business, Economics and Management, 30, 179–185. https://doi.org/10.54097/f85rjn67
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Álvaro César Silva, Andre Chen Ching Lin, Leidimara Silva Santos, Anderson Diogo Mendes da Silva, José Antonio Vaz

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Resumo 145
- pdf 63