

e-ISSN: 2176-0756

 $https: \!\!/\!doi.org/10.5585/2023.24970$

Editorial team: Nairana Radtke Caneppele; Helena Belintani Shigaki; Heidy Rodriguez

Ramos; Ivano Ribeiro

COPE

Editorial

A utilização do software VOSviewer em Pesquisas Científicas

Nairana Radtke Caneppele¹

Helena Belintani Shigaki²

Heidy Rodriguez Ramos³

Ivano Ribeiro⁴

Cite as / Como citar

American Psychological Association (APA)

Caneppele, N. R., Shigaki, H. B., Ramos, H. R. & Ribeiro, I. (2023). A utilização do software VOSviewer em Pesquisas Científicas. Editorial. *Iberoamerican Journal of Strategic Management (IJSM)*, 22(1), p. 1-8, e24970. https://doi.org/10.5585/2023.24970

(ABNT – NBR 6023:2018)

CANEPPELE, N. R.; SHIGAKI, H. B.; RAMOS, H. R.; RIBEIRO, I. A utilização do software VOSviewer em Pesquisas Científicas. Editorial. *Iberoamerican Journal of Strategic Management (IJSM)*. v. 22, n. 1, p. 1-8, e24970, 2023. https://doi.org/10.5585/2023.24970

A realização de pesquisas científicas, enquanto atividades sociais que compõem um campo de conhecimento observável e mensurável, é fortemente influenciada pelas condições da sociedade (Moral-Muñoz, 2020). Além do contexto, as informações e dados são insumos para o bom andamento e construção da pesquisa, os quais se tornam cada vez mais reconhecidos e podem ser tratados ou analisados com inúmeros softwares disponíveis gratuitamente ou não (Howison & Bullard, 2016; Yu *et al.*, 2015). Assim, podemos afirmar que o ato de medir, quantificar e analisar é a base fundamental para o desenvolvimento das pesquisas científicas no campo da Administração (Pan *et al.*, 2018).

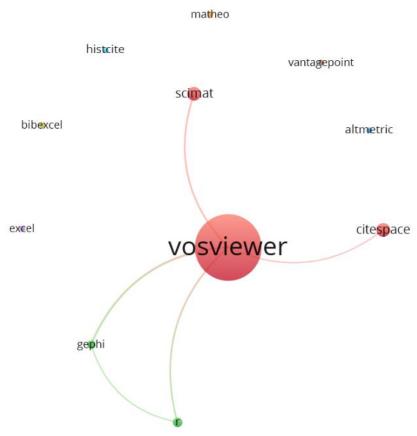
Cabe aos pesquisadores conhecer e compreender o *software* que será empregado em suas análises, com o objetivo de identificar seu valor, não somente financeiro como também utilitário. Isso permite que pesquisadores decidam sobre a seleção de *softwares* que atendam as necessidades específicas de suas pesquisas, contribuindo para uma maior eficiência no processo de pesquisa e rigor nos resultados gerados.

Pesquisando sobre *softwares* e bibliometria na Scopus, maior base de dados de artigos indexados e revisados por pares (Scopus, 2023), em maio deste ano, encontramos 4.451 resultados, sendo 2.767

⁴ Doutor em Administração. Universidade Estadual do Oeste do Paraná – Unioeste. Cascavel (PR) - Brasil. ivano.adm@gmail.com

¹ Doutora em Administração pela Universidade Nove de Julho (Uninove) - São Paulo (SP) - Brasil

² Doutorado em Administração pela Universidade Federal de Minas Gerai (UFMG), Minas Gerais (MG) - Brasil


³ Doutora em Administração. Universidade Nove de Julho (Uninove) - São Paulo (SP) - Brasil. heidyrr@uni9.pro.br

artigos publicados em periódicos. Compartilhando alguns pontos que nos surpreenderam, temos (i) um considerável aumento de publicação nos últimos 5 anos, que passou de 115 publicações em 2018 para 881 em 2022 (766%), (ii) as áreas que mais publicam estudos bibliométricos são, nesta ordem, Medicina (18,8%), Ciências Sociais (16,5%), Ciências da Computação (9,3%), Ciências ambientais (7,3%), Engenharias (6,9%), Administração (6,6%), (iii) o Brasil é o 5° país que mais publica artigos bibliométricos, com o total de 152 publicações, estando atrás apenas da China (n=1.059 artigos), Índia (n=227), Espanha (n=209) e Estados Unidos da América (n=207).

Especificamente, no campo da Administração, encontramos 11 *softwares* que foram utilizados para realização de estudos bibliométricos, sendo, nesta ordem: VOSviewer (75 menções), R (n=15), CiteSpace (n=8), SciMAT (n=8), Gephi (n=4), Altmetric (n=2), BibExcel (n=1), Excel (n=1), HistCite (n=1), Matheo (n=1) e VantagePoint (n=1). Na Figura 1 é possível observar a rede formada entre os *softwares* supracitados, revelando que 5 deles, inclusive, são frequentemente utilizados em conjunto. É possível afirmar que o VOSviewer se torna mais utilizado com o passar do tempo, por ser capaz de apresentar um processo de revisão transparente e reprodutível, aumentando a confiabilidade e a qualidade dos resultados (Ding & Yang, 2020).

Figura 1Rede de Softwares

Fonte: Elaborado pelos autores (2023)

Considerando que todos os métodos, técnicas e softwares de pesquisa são importantes, sendo ou não utilizados em conjunto, neste comentário editorial nosso foco é a bibliometria que pode ser realizada por meio dos *softwares* gratuitos, a exemplo do VOSviewer. Esse *software* oferece a vantagem de ser utilizado em diversas bases de dados, tais como Scopus, Web of Science, Google Scholar, MicrosoftAcademic e Scielo. Com este *software*, também é possível a exibição de mapas construídos usando qualquer técnica de mapeamento adequada à demanda do pesquisador. Consideramos relevante citar que VOSviewer é executado em diversas plataformas de *hardware* e sistema operacional e pode ser iniciado diretamente da Internet.

Por que abordar a bibliometria?

O termo "bibliometria" substituiu a denominação "bibliografias estatísticas" (Pritchard, 1969). Atualmente, os indicadores bibliométricos são usados para medir o impacto de uma ampla variedade de áreas de conhecimento quantificando a produção, o crescimento, maturação e consumo das publicações científicas (Pan *et al.*, 2015; Rey-Martí, Ribeiro-Soriano, & Palacios-Marqués, 2016) com auxílio da tecnologia e do aperfeiçoamento de técnicas (Gutiérrez-Salcedo *et al.*, 2018). A bibliometria pode ser dividida em dois grandes campos de estudo ou áreas temáticas (Tabela 1).

Campos de estudo ou área	as temáticas da bibliometria	
Análise de desempenho	Por meio de índices bibliográficos	Narin, Hamilton (1996); Noyons,
	baseados em dados de publicações e	Moed e Van-Raan, (1999); Cobo,
	citações, para avaliar diferentes atores	López-Herrera, Herrera-Viedma e
	científicos.	Herrera (2011); Small (1999)
Análise de mapeamento	Representação topológica e temporal da	Noyons, Moed e Van-Raan, (1999);
científico	estrutura cognitiva e social de um	Cobo et al., (2011)
	determinado campo de pesquisa.	

Fonte: Elaborado pelos autores (2023)

Tabela 1

Tanto a análise de desempenho, quanto a análise de mapeamento científico, são realizadas por meio de *softwares* com aplicação de métodos estatísticos e matemáticos das produções acadêmicas, tendo seu foco principal na medição como campo de pesquisa, de desempenho acadêmico e de desenvolvimento da ciência. Nas últimas duas décadas, algumas revisões analisaram os *softwares* mais relevantes no campo da bibliometria (Cobo et al., 2011; Sangam & Mogali, 2012; Pradhan, 2016; Chen, 2017) mas, é necessário considerar que eles mudaram com o tempo, e alguns novos apareceram.

Neste momento, podemos citar os seguintes softwares utilizados em pesquisas bibliométricas em todo o mundo: Bibexcel, Biblioshiny, BiblioMaps, CiteSpace, CitNetExplorer, SciMAT, Sci² Tool e VOSviewer. No entanto, nosso foco neste comentário editorial é o VOSviewer, considerando o número de publicações que utilizam este *software*.

Seção: Editorial

Cabe ressaltar que bibliometria é um método e, como tal, não pode ser o próprio objetivo do trabalho. Diante disso, o objetivo de uma pesquisa é sempre maior que o método. No entanto, o método pode ser utilizado para que o pesquisador atinja os objetivos da pesquisa e, ainda, identifique uma lacuna de pesquisa.

O VOSviewer e a sua utilização

O VOSviewer foi desenvolvido por Nees Jan van Eck e Ludo Waltman em 2010 na Leiden University (Holanda) e originalmente introduzido em um artigo publicado na Scientometrics em 2010. Os principais artigos técnicos sobre o VOSviewer são de Van Eck e Waltman, (2010) e Van Eck e Waltman (2014). É um *software* disponível gratuitamente para construção e visualização de mapas bibliométricos (Pan *et al.*, 2018). Possui características especificas que o difere dos demais *softwares* (Tabela 2).

Tabela 2

Características do VOSviewer

DADOS		
Web of Science, Scopus, Dimensions, Lens e PubMed	Redes de coautoria, redes baseadas em citações e redes de coocorrência podem ser criadas com base em dados secundários. Redes de coautoria e redes de coocorrência também podem ser criadas com base nos dados do PubMed.	
Crossref, Europa PMC e OpenAlex	As redes também podem ser criadas com base nos dados recuperados por meio das APIs da Crossref, Europe PMC e OpenAlex. Essas APIs podem ser consultadas interativamente no VOSviewer.	
Semantic Scholar, OpenCitations e WikiData	Para um determinado conjunto de DOIs, as redes também podem ser criadas com base nos dados recuperados por meio das APIs do Semantic Scholar, OpenCitations e WikiData.	
VISUALIZAÇÃO		
Zoom e rolagem	As visualizações de redes bibliométricas podem ser exploradas em todos os detalhes usando a funcionalidade de zoom e rolagem semelhante, por exemplo, ao Google Maps. Um algoritmo de rotulagem inteligente evita que os rótulos se sobreponham.	
Densidade e visualizações de sobreposição	As visualizações de densidade fornecem uma visão geral rápida das principais áreas em uma rede bibliométrica. Visualizações de sobreposição podem, por exemplo, ser usadas para mostrar desenvolvimentos ao longo do tempo.	
Capturas de tela	Capturas de tela de visualizações de rede bibliométricas podem ser criadas em alta resolução e podem ser salvas em muitos formatos de arquivos gráficos populares, tanto bitmap quanto formatos vetoriais.	
TÉCNICAS		
Técnicas avançadas de layout e agrupamento	Técnicas de última geração para layout de rede e agrupamento de rede são fornecidas. Os resultados de layout e agrupamento podem ser ajustados usando vários parâmetros.	
Técnicas de processamento de linguagem natural	Técnicas de processamento de linguagem natural estão disponíveis para criar redes de coocorrência de termos com base em dados textuais em inglês. Termos relevantes e não relevantes podem ser distinguidos algoritmicamente.	
Criação de redes bibliométricas	Vários recursos avançados estão disponíveis para a criação de redes bibliométricas (por exemplo, coautoria, acoplamento bibliográfico e redes de cocitação). Por exemplo, a influência de publicações com muitos autores, muitas citações ou muitas referências pode ser reduzida usando uma abordagem de contagem fracionária. A limpeza de dados pode ser realizada usando arquivos de dicionário de sinônimos.	

Fonte: Site VOSviewer (2023).

Ao analisar as publicações na base de dados Scopus, as revistas que mais publicam artigos bibliométricos com o uso do VOSviewer, na área de estratégia são: *Journal of Business Research, Business Strategy and the Environment, European Management Journal, Management Research Review, Technology Analysis and Strategic Management, Academy of Strategic Management Journal e Management Decision.* Já na base de dados Web of Science, que apesar de conter uma menor quantidade de artigos quando comparado à Scopus, apresenta o *International Business Review* como uma opção, além das referenciadas na Scopus.

Os dados secundários utilizados são as pesquisas publicadas, adquiridos em banco de dados (Albort-Morant & Ribeiro-Soriano, 2016) e quanto mais uma publicação for referida, mais predominante ela se tornará para o desenvolvimento de uma área e estará em evidência no mapa do *software* (Danvila-del-Valle, Estévez-Mendoza, & Lara, 2019). Logo, aparecerá nas análises e visualizações do VOSviewer, permitindo um trabalho bibliométrico profundo e, ao mesmo tempo, claro e transparente (Van Eck & Waltman, 2014; Ding & Yang, 2020).

É um *software* projetada para construir e visualizar redes bibliométricas, com base em cocitação, pareamento (em inglês *bibliographic coupling*) ou relações de coautoria (Van-Eck & Waltman, 2010), com ênfase em autores, organizações ou países. A cocitação, por exemplo, é um método que reflete a influência passada do campo de pesquisa, relacionada ao impacto de publicações e que representa a base de conhecimento do campo. Enquanto o pareamento é útil para detectar tendências e possíveis caminhos para um campo, refletindo a evolução da pesquisa e não o seu impacto (Bussler *et al.*, 2020).

Também é possível construir redes de coocorrência de termos importantes extraídos de um *corpus* de literatura científica, usando uma funcionalidade de mineração de texto, além de criar mapas de tendência e de calor, identificar *hot-topics* de pesquisa, analisar a força entre os *links* construídos, bem como validar uma ideia ou descobrir uma lacuna teórica. No entanto, o *software* não permite extrair qualquer matriz de coocorrência dos dados bibliométricos, o que pode ser feito somente de maneira externa. Além disso, ele não possui módulos de pré-processamento para preparar os dados para posterior análise. Por estes motivos, por exemplo, o *software* é continuamente utilizado em conjunto com outros, a fim de maximizar os potenciais da pesquisa com o valor que cada um pode oferecer ao pesquisador.

Para a construção de mapas, especificamente, o VOSviewer faz uso de três etapas baseando-se em uma matriz de coocorrência. Na primeira etapa, uma matriz de similaridade é calculada com base na matriz de coocorrência. Na segunda etapa, um mapa é construído aplicando a técnica de mapeamento VOS à matriz de similaridade. E, finalmente, na terceira etapa, o mapa é transladado, girado e refletido (Van Eck & Waltman, 2010). O VOSviewer usa a técnica de mapeamento VOS (Van Eck & Waltman, 2007), onde VOS significa visualização de similaridades.

Como criar a sua rede de palavras-chave no VOSviewer?

Até o momento, você, leitor, sabe das funcionalidades, oportunidades e fraquezas do VOSviewer. Sabe, também, das múltiplas possibilidades de aplicação. Não podemos, portanto, finalizar este editorial sem deixar um breve tutorial para você iniciar as atividades.

Comece acessando a base de dados Scopus, com o login e senha disponibilizados pela biblioteca da sua instituição. Faça a busca, como de costume, e aplique os filtros necessários para começarmos a exportação dos resultados. Cabe aqui um alerta: para pesquisas com mais de 2 mil resultados, você poderá salvá-la em diferentes arquivos e realizar o *upload* no VOSviewer selecionando todos ao mesmo tempo. Exporte os resultados em CSV.

Faça o download do *software*, gratuito, em https://www.vosviewer.com/download e siga os passos:

- 1 Clique em "create"
- 2 Clique em "create a map based on bibliographic data"
- 3 Selecione a opção "Read data from bibliographic database files" e o arquivo exportado da Scopus
- 4 Clique em "co-occurrence" e em "all keywords"
- 5 Selecione, de acordo com o seu julgamento, a quantidade de palavras que irá aparecer em sua rede

Para otimizar a sua rede de palavras, recomendamos o uso do recurso *Thesaurus*, para identificar e retirar repetições de palavras, corrigir eventuais erros de digitação, e realizar traduções. Para facilitar a visualização do resultado gerado pelo *software*, recomendamos que você navegue pelos mapas de visualização: (i) *overlay visualization*, para o mapa de tendência e, (ii) *density visualization*, para o mapa de calor.

Referências

- Albort-Morant, G., & Ribeiro-Soriano, D. (2016). A bibliometric analysis of international impact of business incubators. *Journal of Business Research*, 69(5), 1775–1779.
- Bussler, N. R. C., Hsu, P. L., Storopoli, J. E., & Maccari, E. A. (2019). Cenários para o futuro da educação a distância. *Revista Gestão & Tecnologia*, 19(2), 4-26.
- Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. *Journal of informetrics*, 5(1), 146-166.
- Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. *Journal of the American Society for information Science and Technology*, 62(7), 1382-1402.
- Danvila-del-Valle, I., Estévez-Mendoza, C., & Lara, F. J. (2019). Human resources training: A bibliometric analysis. *Journal of Business Research*, 101, 627-636.
- Ding, X., & Yang, Z. (2020). Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. *Electronic Commerce Research*, 1-23.
- Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. *Applied intelligence*, 48(4), 1275-1287.
- Howison, J., & Bullard, J. (2016). Software in the scientific literature: Problems with seeing, finding, and using software mentioned in the biology literature. *Journal of the Association for Information Science and Technology*, 67(9), 2137–2155.

- Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. *El Profesional de la Información*, 29(1), 1-20.
- Narin, F., & Hamilton, K. S. (1996). Bibliometric performance measures. *Scientometrics*, 36(3), 293-310.
- Noyons, E., Moed, H., & Van Raan, A. (1999). Integrating research performance analysis and science mapping. *Scientometrics*, 46(3), 591-604.
- Pan, X., Yan, E., Cui, M., & Hua, W. (2018). Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. *Journal of informetrics*, 12(2), 481-493.
- Pritchard, A. (1969). Statistical bibliography or bibliometrics. *Journal of documentation*, 25(4), 348-349
- Rey-Martí, A., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2016). A bibliometric analysis of social entrepreneurship. *Journal Business Research*, 69(5), 1651–1655.
- Small, H. (1997). Update on science mapping: Creating large document spaces. *Scientometrics*, 38(2), 275–293.
- Scopus. (2023). About Scopus. http://blog.scopus.com/about
- Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 15(05), 625-645.
- Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In: Ding, Y., Rousseau, R., Wolfram, D. (Eds) Measuring Scholarly Impact: Methods and practice. Springer, 285-320.
- Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics*, 84(2), 523-538.
- VOSviewer. (2023). Highlights. https://www.vosviewer.com/features/highlights
- Yu, Q., Ding, Y., Song, M., Song, S., Liu, J., & Zhang, B. (2015). Tracing database usage: Detecting main paths in database link networks. *Journal of Informetrics*, 9(1), 1–15.