Efeito da hidroterapia no condicionamento cardiovascular e na qualidade de vida de pacientes após acidente vascular encefálico

Effects of hydrotherapy on the endurance and quality of life in stroke survivors

Maríllia Ramos Dantas Vieira da Costa¹; Regina Celi de Lima¹; Clarissa Pessoa Lopes²; Lívia Shirahige³; Plínio Luna Albuquerque⁴

- Fisioterapeuta graduada pelo Centro Universitário Tabosa de Almeida ASCES/UNITA. Caruaru, PE Brasil.
- ²Fisioterapeuta pós-graduada em Fisioterapia Aquática pelo Centro de Estudos e Pesquisas Rogério Antunes -CEPRA, preceptora da Clínica Escola de Fisioterapia do Centro Universitário Tabosa de Almeida ASCES/UNITA. Caruaru, PE Brasil.

 ³Fisioterapeuta, Mestre em Fisioterapia pela Universidade Federal de Pernambuco UFPE e doutoranda em Neurociências pelo
- ³ Fisioterapeuta, Mestre em Fisioterapia pela Universidade Federal de Pernambuco UFPE e doutoranda em Neurociências pelo Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento da Universidade Federal de Pernambuco UFPE. Recife. PE Brasil.
- ⁴Fisioterapeuta, Mestre em Saúde da Criança e do Adolescente pela Universidade Federal de Pernambuco UFPE; doutorando em Neurociências pelo Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento da UFPE. Docente do departamento de Fisioterapia do Centro Universitário Tabosa de Almeida ASCES/UNITA. Caruaru, PE Brasil.

Endereço para Correspondência

Plínio Luna Albuquerque Centro Universitário Tabosa de Almeida - ASCES/ UNITA, Campus I, Departamento de Fisioterapia. Av. Portugal, 584, Bairro Universitário 55016 - 400 – Caruaru, PE, Brasil plinioluna@gmail.com

Resumo

Introdução: os efeitos do treinamento cardiovascular são potencializados quando realizados na piscina terapêutica devido às propriedades físicas da água. Objetivo: avaliar os efeitos de um protocolo de hidroterapia na qualidade de vida e no condicionamento cardiovascular de pacientes pós-AVE. Métodos: dez pacientes foram divididos nos grupos: controle (exposto ao protocolo de exercícios no solo) e experimental (submetidos a 10 sessões de hidroterapia). As medidas para frequência cardíaca e respiratória, o número de voltas, saturação de oxigênio durante o teste de caminhada de seis minutos e qualidade de vida segundo a escala EQVE-AVE, foram avaliadas antes e após o programa de atividades. Resultados: houve um aumento expressivo da quantidade de voltas [12,80 ± 2,78 (p=0,01)] em ambos os grupos e dos escores para a qualidade de vida [196,20±42,92 (p=0,046)] apenas no grupo experimental em relação a condição inicial. Conclusão: o protocolo de hidroterapia promoveu os mesmos efeitos do treinamento no solo sobre o condicionamento cardiovascular, no entanto, aumentou os escores para qualidade de vida.

Descritores: Acidente vascular cerebral; Hidroterapia; Qualidade de vida; Resistência física.

Abstract

Introduction: Cardiovascular training programs effects are extended when performed in the therapeutic pool due to physical properties of the water. **Objective**: To evaluate the effects of a hydrotherapy protocol on the quality of life and endurance in stroke survivors. **Methods**: ten stroke survivors were divided into two groups: control (exposed to a floor exercise protocol) and experimental (underwent to 10 sessions of hydrotherapy). Heart and respiratory rate and oxygen saturation were assessed during the six-minute walk test. Additionally, the number of turns and stroke specific quality of life scale (SS-QOL) were assessed before and after the exercise protocols. **Results**: there was a significant increase in the number of turns [12.80 \pm 2.78 (p = 0.01)] in both groups and in the quality of life scores [196.20 \pm 42.92 (p = 0.046)] only after hydrotherapy protocol when compared to the baseline condition. **Conclusion**: the hydrotherapy protocol promoted the same benefits of the floor exercise's protocol on the endurance, however, it increased the quality of life scores.

Key words: Stroke; Hydrotherapy; Quality of Life; Physical endurance.

Introdução

O acidente vascular encefálico (AVE) é a causa mais comum de incapacidade por disfunções do sistema nervoso na população adulta e, no Brasil, constitui a primeira causa de morte dentre as doenças de origem vascular¹. O sinal clínico mais comum da doença é a hemiparesia, podendo estar associada a alterações de tônus, equilíbrio e do controle motor². Os déficits de força são decorrentes da redução do recrutamento de unidades motoras devido à lesão das vias corticoespinhais, o que leva a uma diminuição da capacidade oxidativa dos músculos e da resistência aeróbia global^{3,4}. Estas repercussões induzem a um aumento no gasto energético durante a execução das Atividades de Vida Diária (AVD's), restrições do convívio social e redução da qualidade de vida⁵.

Na tentativa de minimizar as disfunções decorrentes das sequelas de AVE, alguns programas de treinamento cardiovascular têm sido propostos com o objetivo de aumentar o condicionamento cardiovascular, reduzir da fadiga, diminuir o gasto energético durante a marcha e melhora a qualidade de vida^{3,6,7}. Dentre os diversos programas, a hidroterapia constitui uma possibilidade terapêutica interessante por facilitar a execução de movimentos controlados durante a descarga de peso corporal e transferências⁸.

Os exercícios na água incorporam os princípios da flutuação que diminuem o peso dos membros e facilitam a execução de movimentos. Além disso, as propriedades físicas da água permitem o alívio da sobrecarga articular, relaxamento da musculatura espástica, flexibilização de tecidos moles e melhora do retorno venoso⁹. Por outro lado, exercícios no solo exigem maior quantidade de reações de equilíbrio que podem ser difíceis para pacientes hemiparéticos¹⁰.

Embora o ambiente aquático possua elementos favoráveis à reabilitação, uma revisão sistemática recente concluiu que não há evidência acerca da superioridade da hidroterapia em relação aos exercícios executados no solo para melhorar a mobilidade e condicionamento de indivíduos com sequelas neurológicas⁸. Este resultado foi atribuído a baixa qualidade metodológica e as diferenças entre as medidas de desfechos adotadas nos estudos.

Considerando os benefícios do ambiente aquático na reabilitação de pacientes crônicos e a necessidade da realização ensaios clínicos randomizados e com boa qualidade metodológica, este estudo tem por objetivo comparar os efeitos de um protocolo de hidroterapia com um programa de exercícios no solo sobre a qualidade de vida e condicionamento cardiovascular de pacientes pós-AVE.

Material e métodos

Trata-se de um estudo piloto do tipo experimental, realizado no período de julho e agosto de 2014, no ambulatório de fisioterapia da Associação Caruaruense de Ensino Superior, localizado em Caruaru, Pernambuco. Antes de serem submetidos aos procedimentos experimentais da pesquisa, todos os indivíduos leram e assinaram o consentimento e assinatura do Termo de Consentimento Livre e Esclarecido (TCLE), elaborado segundo as normas das recomendações da resolução 466/2012 do Conselho Nacional de Saúde, tendo sido aprovado pelo Comitê de Ética e Pesquisa da Associação Caruaruense de Ensino Superior (CEP/ASCES), CAAE: 32898614.4.0000.5203.

Foram incluídos 10 pacientes pós acidente vascular encefálico, de ambos os sexos, com idade superior a 25 anos. Apenas indivíduos que possuíam boa compreensão foram incluídos (de acordo com os escores do Mini Exame do Estado Mental – MEEM)¹¹.

Na triagem, os dados sociodemográficos e biológicos foram coletados e analisados segundo os critérios de inclusão. Foram incluídos indivíduos que obtiveram ≥ 51 pontos na escala Fugl-Meyer para funcionalidade. Foram excluídos da pesquisa os pacientes com duas faltas

consecutivas no protocolo experimental, com lesões dermatológicas, transtornos psiquiátricos, incontinências urinária e/ou fecal ou que estivessem fazendo uso de cateteres e sondas. Uma vez incluídos na pesquisa os pacientes foram alocados de forma randômica (a partir de uma sequência de números aleatórios gerados pelo site randomization.com), por um pesquisador externo e cego, em dois grupos contendo cinco pacientes cada: (G1) experimental e (G2) controle. O sigilo de alocação foi mantido a partir da distribuição da sequência em envelopes selados e opacos pelo mesmo pesquisador responsável pela randomização.

A avaliação da qualidade de vida foi realizada por meio da aplicação da Escala específica para qualidade de vida em pacientes pós-AVE (EQVE-AVE)¹². Foram analisados os resultados dos escores brutos da EQVE-AVE e os escores por domínios (energia, papéis familiares, linguagem, mobilidade, humor, personalidade, autocuidado, papéis sociais, memória/concentração, função de extremidade superior, visão e trabalho/produtividade). A avaliação do condicionamento cardiorrespiratório foi realizada por meio do Teste de caminhada de 6 minutos.

O grupo experimental foi submetido a 10 sessões de fisioterapia aquática com frequência de três vezes por semana e duração de 50 minutos. O grupo controle recebeu a mesma quantidade de sessões, contendo 50 minutos de fisioterapia convencional, apenas no solo. Os protocolos utilizados para o grupo experimental e grupo controle encontram-se descritos nos quadros 1 e 2, respectivamente.

Após a finalização do protocolo experimental, todos os pacientes do grupo experimental e do grupo controle foram reavaliados segundo os instrumentos já citados. Todas as análises foram conduzidas de acordo com o princípio da intenção de tratar (com imputação dos dados da última observação realizada), na qual foram incluídos os dados de todos os participantes randomizados e analisados os dados de acordo com o grupo no qual eles foram alocados.

Fase	Atividades				
Fase 1. Adaptação ao meio aquático e aquecimento (5 min)	Caminhada com entrada lenta e sem turbulência na piscina com nível de imersão no processo xifoide; caminhada para frente (12 metros); caminhada lateral com abertura de pernas e braços e imersão de MMSS durante a caminhada (12 metros).				
Fase 2. Flexibilização (10 min)	Manobras do Watsu: balanço da perna de dentro e da perna de fora (alongamento de adutores, cadeia lateral do tronco, e peitoral) e balanço de braço, balanço braço perna. Alongamento de gastrocnêmio, sóleo e isquiostibiais na borda da piscina com a perna para frente.				
Fase 3. Fortalecimentos específicos (15 min)	Step: com descarga de peso na perna parética (subida, descida e volta de costas); descer step pela lateral (2x5 repetições); tronco: Bad Ragaz (inclinação Lateral; inclinação com rotação com ponto chave no quadril (2x5 repetições); membro superior: fortalecimento em diagonal de flexão – abdução rotação externa com resistor na postura vertical em imersão a nível da sétima vértebra cervical (2x10 repetições).				
Fase 4. Condicionamento cardiovascular (15 min)	Bicicleta aquática com flutuador por 10 minutos; nado ou cami- nhada (5 min).				
Fase 5. Desaquecimento (5 min)	Hidromassagem e mobilização escapular na postura de supino.				

Quadro 1: Protocolo de atividades do grupo experimental na piscina terapêutica

Em relação à análise estatística realizada, a normalidade e a homogeneidade dos dados foram testados por meio do teste de Shapiro-Wilk e Levene, respectivamente. O teste-t pareado foi utilizado para verificar diferença entre as medidas iniciais e finais dentro de um mesmo grupo e o teste-t para amostras independentes para verificar diferença entre os grupos. Todas as análises estatísticas foram realizadas no programa *Statistical Package for Social Sciences* (SPSS) versão 18.0 e foram consideradas como significância estatística medidas ≤ 0,05.

Fase	Atividades		
Fase 1. Aquecimento (5 min)	Caminhada frontal		
Fase 2. Flexibilização (10 min)	Alongamento dos músculos bíceps braquial, flexores do punho e dedos e peitorais. Alongamento da cadeia anterior e lateral, flexores do quadril, quadríceps femoral, ísquios tibiais e flexores plantares. Mobilização escapulo-torácica e glenoumeral (5 min);		
Fase 3. Fortalecimentos específicos (15 min)	Fortalecimento dos músculos do membros superior na diagonal de flexão – abdução–rotação externa (2x10); fortalecimento da cadeia lateral de tronco (2x10); bicicleta (5min); treino de marcha com facilitação (5 min).		
Fase 4. Condicionamento cardiovascular (15 min)	Exercícios calistêmicos para membros superiores e bicicleta		

Quadro 2: Protocolo de atividades do grupo controle no solo

Resultados

Foram incluídos 10 pacientes, cinco participantes do grupo controle (55,6 ± 14,5 anos, 4 mulheres) e cinco do grupo experimental (56,4 ± 19,9 anos, 3 mulheres). As características biológicas dos indivíduos e as variáveis referentes ao acidente vascular cerebral encontram-se na tabela 1. Os grupos controle e experimental apresentaram-se semelhantes quanto à idade; índice de massa corporal, circunferência abdominal, tempo de AVC e estado cognitivo avaliado pelo MEEM.

Por meio da análise intra-grupo, o teste-t pareado (antes e após experimento) identificou uma redução significativa da frequência cardíaca após o teste de caminhada de seis minutos para o grupo controle (p = 0,003, diferença de média 6.0 ± 0.56) e um aumento significativo na quantidade de voltas no grupo controle (p = 0,001, diferença de média -0.6 ± 0.56) e no grupo experimental (p = 0,01, diferença de média -1.8 ± 0.37) em relação à condição inicial. Apenas o

Tabela 1: Características dos pacientes incluídos no estudo

moraraes no estado								
Variável	Grupo controle (n=5)	Grupo experimental (n = 5)	p valor					
Idade (anos)	$55,6 \pm 14,3$	56,4 ±19,9	0,94					
IMC (Kg/cm ²)	$26,1 \pm 5,9$	$25,9 \pm 2,7$	0,95					
Circunferência abdominal	93,9 ± 17,7	89,8 ± 14,4	0,70					
Sexo								
Masculino	1 (20%)	2 (40%)	0,49					
Feminino	4 (80%)	3 (60%)						
Raça								
Branco	3 (60%)	4 (80%)	0,57					
Pardo	1 (20%)	1 (20%)						
Negro	1 (20%)	_						
Tempo de AVC (meses)	26 ± 13	31 ± 22	0,73					
Tipo de AVC								
Isquêmico	5 (100%)	5 (100%)	1,0					
Hemorrágico	_	_						
Hemicorpo acometido								
Direito	1 (20%)	1 (20%)	1,0					
Esquerdo	4 (80%)	4 (80%)						
MEEM	$25,8 \pm 0,8$	$25,8 \pm 0,84$	0,99					

IMC: Índice de massa corporal. MEEM: Mini exame do estado de saúde mental

grupo experimental (p = 0,046, diferença de média -42 ± 32,9) apresentou aumento significativo para o índice geral de qualidade (EQVE-AVE) em relação à condição basal.

O teste t para amostras independentes revelou diferença significativa entre os valores aferidos para a pressão diastólica de repouso após o período do experimento entre os grupos controle e experimental (p = 0,05, diferença de média -10 \pm 4,23), indicando valores pressóricos mais baixos para o grupo controle (Tabela 2).

Discussão

O objetivo desse estudo foi comparar os efeitos de um protocolo de hidroterapia aos efeitos da reabilitação no solo na recuperação do condicionamento cardiovascular e da qualidade de vida de pacientes pós-AVE. Os resultados deste estudo indicaram que tanto o programa de reabilitação no solo quanto o

Tabela 2: Resultados da avaliação do índice de qualidade de vida e do condicionamento cardiorrespiratório dos pacientes no período antes e após o experimento

	Avaliação antes da intervenção			Avaliação após a intervenção		
Variável	Grupo controle (n=5)	Grupo experimental (n=5)	p valor	Grupo controle (n=5)	Grupo experimental (n=5)	p valor
EQVE-AVE	171,20 ± 6,1	154,20 ± 36,28	0,33	176,20 ± 14,22	196,20 ± 44,92	0,37
FC repouso	$77,40 \pm 12,44$	73.8 ± 19.67	0,74	$72,60 \pm 9,66$	$64,0 \pm 8,27$	0,17
FR repouso	$19,80 \pm 2,59$	$21,20 \pm 3,11$	0,46	$18,40 \pm 2,30$	$17,40 \pm 2,30$	0,51
SpO2 repouso	$96,40 \pm 4,22$	$96,0 \pm 2,55$	0,86	$96,4 \pm 3,05$	$97,20 \pm 1,64$	0,62
PAS repouso	$122,0 \pm 8,38$	$136,0 \pm 21,91$	0,22	$116,0 \pm 8,95$	122 ± 8,38	0,31
PAD repouso	$76 \pm 8,95$	$84 \pm 8,95$	0,20	$72 \pm 13,47$	$82 \pm 8,37$	0,05
FC após teste-6	85 ± 11,05	81,80 ± 16,42	0,73	$79 \pm 14,27$	$72,80 \pm 16,07$	0,54
FR após teste-6	$19,60 \pm 2,51$	$20,20 \pm 2,28$	0,70	$18,20 \pm 0,84$	$17,40 \pm 1,52$	0,33
SpO2 após teste-6	$94,80 \pm 3,56$	$95,4 \pm 3,21$	0,79	$96,2 \pm 3,03$	97,60± 1,14	0,37
PAS após teste-6	124,0 ± 13,416	$118,0 \pm 4,47$	0,37	$118,0 \pm 8,37$	118,0 ± 10,95	0,99
PAD após teste-6	80 ± 10	$84,0 \pm 5,48$	0,45	74.0 ± 5.48	$78,0 \pm 4,48$	0,24
Voltas	12.8 ± 3.83	$11,0 \pm 2,45$	0,40	$13,4 \pm 3,78$	$12,80 \pm 2,78$	0,78

EQVE-AVE = Escala de qualidade de vida específica para acidente vascular encefálico; FC repouso = Frequência cardíaca de repouso; FR repouso = Frequência respiratória de repouso; SpO2 repouso = saturação de oxigênio no repouso; PAS repouso = Pressão arterial sistólica de repouso; PAD repouso = pressão arterial diastólica de repouso; FC após teste-6 = Frequência cardíaca após o teste de caminhada de seis minutos; FR após teste-6 = Frequência respiratória após teste de caminhada de seis minutos; SpO2 após teste-6 = Saturação de oxigênio após teste de caminhada de seis minutos; PAS após teste-6 = Pressão arterial sistólica após teste de caminhada dos seis minutos; PAD após teste-6 = Pressão arterial diastólica após teste de caminhada dos seis minuto. Voltas = número de voltas durante o teste de caminhada de seis minutos.

protocolo de hidroterapia aumentaram significativamente o número de voltas no teste de caminhadas de 6 minutos e reduziram a frequência cardíaca sem que houvesse diferença entre os grupos. Adicionalmente, apenas o grupo experimental apresentou melhora no índice geral de qualidade de vida quando comparado a condição inicial.

Os benefícios da prática de exercícios aeróbicos em solo sobre o condicionamento cardiovascular de indivíduos com sequelas de acidente vascular cerebral foram objeto de estudo de duas importantes revisões sistemáticas^{13,14}. Mehrholz e colaboradores (2017), por meio de uma revisão sistemática que incluiu 56 estudos randomizados e um total de 3.105 indivíduos, verificaram que a caminhada na esteira possui modera evidência em aumentar a velocidade da marcha e a resistência cardiovascular (distância percorrida) de indivíduos com sequelas de acidente vascular encefálico14.

Adicionalmente, Saunders e colaboradores (2016) apontaram para os benefícios dos exercícios cardiorrespiratório e de protocolos mistos contendo exercícios resistidos na diminuição da incapacidade, no aumento da mobilidade e da velocidade da marcha em pacientes com sequelas após AVE¹³. Assim como nos resultados apresentados por nosso estudo, estas revisões não encontraram evidências acerca dos benefícios do treinamento cardiorrespiratório para a melhoria da qualidade de vida destes pacientes.

Em relação aos resultados para as variáveis de condicionamento cardiovascular do grupo experimental, embora não tenha sido capaz de reduzir os valores para a frequência cardíaca em repouso como no grupo controle, o grupo exposto a hidroterapia foi capaz de aumentar significativamente o número de voltas no teste de caminhada de seis minutos. Estes resultados corroboram ensaios clínicos prévios contendo exercícios do método Halliwick¹⁵ e hidrocinesioterapia¹⁶ que demonstraram os benefícios do ambiente aquático na recuperação mobilidade, do equilíbrio e do condicionamento cardiovascular em sujeitos com sequelas de AVE^{10,17}.

Portanto, a ausência de diferença entre os grupos no período pós-intervenção deve-se ao fato de que ambos os protocolos (solo e piscina) foram capazes de promover benefícios semelhantes sobre os desfechos avaliados. Este resultado corrobora com ensaios clínicos recentes que compararam protocolos terapêuticos no solo e na piscina sobre a mobilidade e condicionamento cardiovascular de indivíduos com sequelas de AVE nas fases subaguda¹⁸ e crônica¹⁰. Adicionalmente, a não diferença entre os grupos pode ter sido atribuída ao pequeno tamanho amostral e ao curto período de intervenção.

No presente estudo, também foi verificado uma diminuição da pressão arterial diastólica grupo controle em relação ao grupo experimental. Este resultado deve-se ao efeito imediato da imersão, onde a pressão hidrostática da água exercida sob corpo aumenta consideravelmente o trabalho respiratório, direcionando o sangue das extremidades e vasos abdominais para os vasos torácicos, promovendo desta maneira uma elevação significativa da pressão intraventricular direita, do débito cardíaco e do volume de ejeção^{19, 20}. Estas alterações, se mantidas, podem promover uma melhora do retorno venoso, uma redução da resistência vascular sistêmica e, consequentemente, diminuição da pressão arterial sistêmica a longo prazo^{19, 20}.

No que diz respeito à análise dos escores para qualidade de vida, apenas os pacientes do grupo experimental obtiveram aumento significativa para o índice geral da EQVE-AVE em relação a condição inicial. Este resultado corrobora com o estudo de Matsumoto e coloboradores (2016) que constatou uma melhora significativa na qualidade de vida de indivíduos com sequela de AVE submetidos à hidroterapia em relação à condição inicial quando comparado à terapia convencional no solo⁹. Esta melhora foi atribuída aos benefícios da hidroterapia na recupera-

ção da mobilidade, independência funcional e velocidade da marcha que foram considerados como preditores para escores mais altos de qualidade de vida^{9,21}.

Pode-se destacar como aspecto positivo do presente estudo a descrição detalhada e clara das atividades realizadas durante as intervenções na piscina e no solo. Ademais, os processos de randomização, mascaramento e sigilo de alocação propiciaram uma maior validade interna aos resultados apresentados. Dentre as limitações, destacam-se a ausência de avaliações prospectivas que permitiriam a observação das respostas encontradas ao longo do tempo e o pequeno tamanho amostral.

Levando-se em consideração a diminuição da tolerância ao exercício físico decorrente da piora do condicionamento cardiovascular e do aumento do gasto energético entre os pacientes com sequela de AVE na fase crônica, a hidroterapia é um recurso capaz de diminuir a sobrecarga sobre as articulações, favorecendo uma melhor distribuição do peso corporal e equilíbrio estático^{8,20}. Neste sentido, embora não tenha sido constatada diferença entre os grupos experimental e controle, o protocolo de hidroterapia foi capaz de induzir os mesmos benefícios sobre o condicionamento cardiovascular que o protocolo de exercícios no solo, no entanto, com menores sobrecarga articular além de promover benefícios sobre a sobre a qualidade de vida.

Conclusão

De acordo com os resultados obtidos neste estudo, pode-se concluir que o programa de exercícios na piscina terapêutica apresentou resultados semelhantes aos exercícios de solo para a redução da frequência cardíaca de repouso e ao aumento do número de voltas no teste de seis minutos. Adicionalmente foi capaz de aumentar o índice de qualidade de vida em relação à condição inicial. Ensaios clínicos randomizados e controlados, com maior número de participantes

e maior tempo de seguimento são necessários para verificar os efeitos do protocolo proposto nos desfechos estudados.

Agradecimento

Agradecemos a clínica escola da Faculdade ASCES por permitir a utilização de suas instalações e aos pacientes participantes da pesquisa.

Referências

- Bensenor IM., et al. Prevalence of stroke and associated disability in Brazil: National Health Survey-2013. Arq Neuropsiquiatr. 2015; 73(9): 746-750.
- Allison R, et al. What is the longitudinal profile of impairments and can we predict difficulty caring for the profoundly-affected arm in the first year post-stroke? Arch Phys Med Rehabil. 2017: S0003-9993(17)31020-1.
- Dunn A, Marsden DL, Barker D, Van Vliet P, Spratt NJ, Callister R. Cardiorespiratory fitness and walking endurance improvements after 12 months of an individualised home and community-based exercise programme for people after stroke. Brain Inj. 2017:1-8. doi: 10.1080/02699052.2017.1355983.
- Duncan F, Kutlubaev MA, Dennis MS, Greig C, Mead GE. Fatigue after stroke: A systematic review of associations with impaired physical fitness. Int J Stroke. 2012;7 (2):157-162.
- 5. Tse T, et al. Increased work and social engagement is associated with increased stroke specific quality of life in stroke survivors at 3 months and 12 months post-stroke: a longitudinal study of an Australian stroke cohort. Top Stroke Rehabil. 2017; 24 (6): 1-10.
- 6. Billinger SA, et al. Physical activity and exercise recommendations for stroke survivors. Stroke. 2014; 45(8): 2532-2553.
- In T, Jin Y, Jung K, Cho H. Treadmill training with Thera-Band improves motor function, gait and balance in stroke patients. NeuroRehabilitation, (Preprint). 2017: 1-6.
- Marinho-Buzelli AR, Bonnyman AM, Verrier MC. The effects of aquatic therapy on mobility of individuals with neurological diseases: a systematic review. Clin Rehabil. 2015; 29(8):741-51.

- Matsumoto S, et al. Effect of Underwater Exercise on Lower-Extremity Function and Quality of Life in Post-Stroke Patients: A Pilot Controlled Clinical Trial. J Altern Complement Med. 2016; 22(8): 635-641.
- 10. Zhu Z, et al. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial. Clin Rehabil. 2016; 30(6):587-93.
- 11. Mendonça De Melo D, Gonçalves Barbosa AJ. O uso do Mini-Exame do Estado Mental em pesquisas com idosos no Brasil: uma revisão sistemática. Cien Saude Colet. 2015; 20(12): 3865:3876.
- 12. Wong GKC, et al. Clinically important difference of Stroke-Specific Quality of Life Scale for aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2016;33:209-212.
- Saunders DH, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2016;3:CD003316.doi:10.1002/14651858.CD003316.pub6.
- 14. Mehrholz J, Simone T, Bernhard E. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8: CD002840. doi: 10.1002/14651858.CD002840.pub4 (Preprint).
- 15. Tripp F, Krakow K. Effects of an aquatic therapy approach (Halliwick-Therapy) on functional mobility in subacute stroke patients: a randomized controlled trial. Clin Rehabil. 2014; 28(5):432-9.
- 16. Furnari A, et al. Is hydrokinesitherapy effective on gait and balance in patients with stroke? A clinical and baropodometric investigation. Brain Inj. 2014; 28(8):1109-14.
- Montagna JC, Santos BC, Battistuzzo CR, Loureiro APC. Effects of aquatic physiotherapy on the improvement of balance and corporal symmetry in stroke survivors. Int J Clin Exp Med. 2014 Apr 15;7(4):1182-7.
- Chan K, et al. The effect of water-based exercises on balance in persons post-stroke: a randomized controlled trial. Top Stroke Rehabil. 2017;24(4):228-235.
- Bergamin M, Ermolao A, Matten S, Sieverdes JC, Zaccaria M. Metabolic and cardiovascular responses during aquatic exercise in water at different temperatures in older adults. Res Q Exerc Sport. 2015; 86(2): 163-171.
- Callejas LHR. Principios físicos y terapéuticos de la hidrocinesiterapia (terapia acuática). Rev Inv e Info Salud. 2016; 11(26): 29-36.
- Gordon CD, Wilks R, McCaw-Binns A. Effect of Aerobic Exercise (Walking) Training on Functional Status and Health-related Quality of Life in Chronic Stroke Survivors. Stroke. 2013; 44(4): 1179-1181.