The role of the innovation ecosystem to develop smart agriculture
DOI:
https://doi.org/10.5585/exactaep.2021.17362Keywords:
Agribusiness, Smart agriculture, Innovation ecosystem, Digital technologies.Abstract
Given the growth of digital technologies development and adoption in the agribusiness ecosystem, which represents an expanding market, the present study verifies the influence of new digital technologies in agribusiness and how the innovation ecosystem actors help develop and implement them. Eighteen semi-structured interviews were conducted with different actors in the agricultural ecosystem. The results show that the digitization process in the sector is still slow due to different barriers related to network infrastructure, the lack of knowledge and skills, and the resistance to technology adoption by farmers, mainly small and medium-sized producers. In this context, the ecosystem actors play a fundamental role: universities with research on tips that impact the sector and public and private companies promoting the use of technologies and being a link between their developers and the farmer.Downloads
References
Armbruster, W.J., Macdonell, M.M., (2014). Informatics to Support International Food Safety. s.l., s.n., pp. 127–134.
Bastiaanssen, Wim G.m; Molden, David J; Makin, Ian W.(2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, [s.l.], v. 46, n. 2, p.137-155. http://dx.doi.org/10.1016/s0378-3774(00)00080-9
Berthet, Elsa T.; Hickey, Gordon M.; Klerkx, Laurens.(2018). Opening design and innovation processes in agriculture: Insights from design and management sciences and future directions. Agricultural Systems, [s.l.], v. 165, p.111-115. http://dx.doi.org/10.1016/j.agsy.2018.06.004
Blender, (2016). Timo et al. Managing a Mobile Agricultural Robot Swarm for a seeding task. Iecon 2016 - 42nd Annual Conference Of The Ieee Industrial Electronics Society, [s.l.], p.6879-6886. IEEE. http://dx.doi.org/10.1109/iecon.2016.7793638
Gottems, Leonardo (2018). Agrolink. Startups modernizam agricultura brasileira. Disponível em: https://www.agrolink.com.br/noticias/startups-modernizam-agricultura-brasileira_409044.html
Fernandez, Benjamin; Herrera, Pedro Javier; Cerrada, Jose Antonio.(2018). Robust digital control for autonomous skid-steered agricultural robots. Computers And Electronics In Agriculture, [s.l.], v. 153, p.94-101. http://dx.doi.org/10.1016/j.compag.2018.07.038
Finistere (org.). Agtech Investment Review. Estados Unidos, 2017.
Finistere (org.). Agtech Investment Review. Estados Unidos, 2018.
Huang, Y., Chen, Z. X., Tao, Y. U., Huang, X. Z., & Gu, X. F. (2018). Agricultural remote sensing big data: Management and applications. Journal of Integrative Agriculture, 17(9), 1915-1931. http://dx.doi.org/10.1016/s2095-3119(17)61859-8
Ingram, J. (2018). Agricultural transition: Niche and regime knowledge systems’ boundary dynamics. Environmental innovation and societal transitions, 26, 117-135. https://doi.org/10.1016/j.eist.2017.05.001
Jackson, D. J. (2011). What is an innovation ecosystem. National Science Foundation, 1.
Jardim, Francisco. (2018). Agfunder Network Partners. Brazil Agtech Market Map: 338 Startups Innovating in Agricultural Powerhouse. Disponível em: https://agfundernews.com/brazil-agtech-market-map-338-startups-innovating-in-agricultural-powerhouse.html/
Jóźwiaka, Á., M. Milkovics, Z. Lakne. (2016). A network-science support system for food chain safety: a case from hungarian cattle production. Int. Food Agribusiness Manage. Rev. Special Issue, 19(A)
Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. https://doi.org/10.1016/j.compag.2017.09.037
Francesc, 2017. A review on the practice of big data analysis in agriculture. Computers And Electronics In Agriculture, [s.l.], v. 143, p.23-37, http://dx.doi.org/10.1016/j.compag.2017.09.037.
Kruize, J. W., Wolfert, J., Scholten, H., Verdouw, C. N., Kassahun, A., & BEULENS, A. J. (2016). A reference architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture, 125, 12-28. http://dx.doi.org/10.1016/j.compag.2016.04.011
Lemos, C., Antonio, S., & Cario, F. (2016). University – industry interaction in Santa Catarina : evolutionary phases , forms of interaction , benefits , and barriers. RAI Revista de Administração E Inovação. http://doi.org/10.1016/j.rai.2016.12.001
Li, X., S. Chen, L. Guo.(2014). Technological innovation of agricultural information service in the age of Big Data. J. Agric. Sci. Technol., 16,pp. 10-15.
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling & Software, 84, 494-504.. http://dx.doi.org/10.1016/j.envsoft.2016.07.017
Meynard, J. M., Jeuffroy, M. H., Le Bail, M., Lefèvre, A., Magrini, M. B., & Michon, C. (2017). Designing coupled innovations. for the sustainability transition of agrifood systems. Agricultural Systems, 157, 330-339. https://doi.org/10.1016/j.agsy.2016.08.002
Mirabent, J., Luís, J., García, S., Ribeiro-Soriano, D.E., 2015. University – industry partnerships for the provision of R & D services ☆. Journal of Business Research. doi: https://doi.org/10.1016/j.jbusres.2015.01.023
Negro, S. O., Alkemade, F., & Hekkert, M. P. 2012. Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and Sustainable Energy Reviews, 16(6), 3836-3846. https://doi.org/10.1016/j.rser.2012.03.043
Oh, D. S., Phillips, F., Park, S., & Lee, E. 2016. Innovation ecosystems: A critical examination. Technovation, 54, 1-6. https://doi.org/10.1016/j.technovation.2016.02.004
Pigford, Ashlee-ann E.; Hickey, Gordon M.; Klerkx, Laurens. (2018). Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agricultural Systems, [s.l.], v. 164, p.116-12. http://dx.doi.org/10.1016/j.agsy.2018.04.007
Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & de Vargas Mores, G. (2018). Scientific development of smart farming technologies and their application in Brazil. Information processing in agriculture, 5(1), 21-32. http://dx.doi.org/10.1016/j.inpa.2017.12.002
Prost, L., Reau, R., Paravano, L., Cerf, M., & Jeuffroy, M. H. (2018). Designing agricultural systems from invention to implementation: the contribution of agronomy. Lessons from a case study. Agricultural systems, 164, 122-132. http://dx.doi.org/10.1016/j.agsy.2018.04.009
Rajalo, S., & Vadi, M. (2017). University-industry innovation collaboration : Reconceptualization, Technovation, http://doi.org/10.1016/j.technovation.2017.04.003
Russell, M. G., & Smorodinskaya, N. V. 2018. Leveraging complexity for ecosystemic innovation. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2017.11.024
Schot, J., & Geels, F. W. (2008). Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy. Technology analysis & strategic management, 20(5), 537-554. https://doi.org/10.1080/09537320802292651
Stal, E., Andreassi, T., & Fujino, A. (2016). The role of university incubators in stimulating academic entrepreneurship. RAI Revista de Administração e Inovação, 13(2), 89-98.
Stephens, Emma C.; Jones, Andrew D.; Parsons, David.(2018). Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agricultural Systems, [s.l.], v. 163, p.1-6. http://dx.doi.org/10.1016/j.agsy.2017.01.011
Sun, Z. Zhou, Y. Bu, J. Zhuo, Y. Chen, D. Li. (2013). Research and development for potted flowers automated grading system based on internet of things. Journal of Shenyang Agricultural University, 44, pp. 687-691.
Syngenta Foundation for Sustainable Agriculture, 2016. FarmForce. [Online] Available at: http://www.farmforce.com/
Tong, L., Hong, T., Jinghua, Z. Research on the Big Data-based government decision and public information service model of food safety and nutrition industry. Journal of Food Safety and Quality, 6 (2015), pp. 366-371. https://doi.org/10.1016/j.agsy.2017.01.023
Tripathi, Shivam; Srinivas, V.v.; Nanjundiah, Ravi S.(2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal Of Hydrology, [s.l.], v. 330, n. 3-4, p.621-640. http://dx.doi.org/10.1016/j.jhydrol.2006.04.030
Tsujimoto, M., Kajikawa, Y., Tomita, J., & Matsumoto, Y. (2017). A review of the ecosystem concept—Towards coherent ecosystem design. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2017.06.032
Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. http://dx.doi.org/10.1016/j.biosystemseng.2017.09.007
Wonglimpiyarat, J. (2016). The innovation incubator, university business incubator and technology transfer strategy: The case of Thailand. Technology in Society, 46, 18-27. https://doi.org/10.1016/j.techsoc.2016.04.002
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69-80. http://dx.doi.org/10.1016/j.agsy.2017.01.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Exacta
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.