Modelagem para avaliação da competitividade em empresas de base tecnológica

Autores

  • Aline Martins dos Santos Universidade Federal de Santa Maria
  • Julio Cezar Mairesse Siluk Universidade Federal de Santa Maria
  • Taís Bisognin Garlet Universidade Federal de Santa Maria
  • Rafael Marcuzzo Universidade Federal de Santa Maria
  • Fernando de Souza Savian Universidade Federal de Santa Maria
  • Jordana Rech Graciano dos Santos Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5585/exactaep.v17n3.8260

Palavras-chave:

Empresas de Base Tecnológica, Ativos Intangíveis, Medição de Desempenho, Competitividade.

Resumo

As empresas de base tecnológica têm apresentado alta taxa de crescimento anual e, por isso, necessitam estar preparadas diante de cenários positivos ou negativos, reforçando o quanto a estratégia faz-se evolutiva e como cada negócio interage com o seu ambiente dependendo da fase do ciclo em que se encontra. Além disso, em um ambiente competitivo, os ativos intangíveis têm sido a fonte de vantagens sustentáveis para o aumento de valor nas organizações. Frente a estes cenários, o artigo tem como objetivo propor uma modelagem de mensuração do nível de competitividade em empresas de base tecnológica a partir dos ativos intangíveis que interferem no ciclo de vida organizacional. No total foram levantados 57 indicadores de desempenho, utilizando-se pressupostos dos Key Performance Indicators (KPI) e elementos de Analytic Hierarchy Process (AHP). Após, a aplicação da pesquisa foi realizada em 31 empresas situadas em diferentes fases do ciclo de vida do negócio.

Downloads

Não há dados estatísticos.

Referências

Andonova, V., & Ruíz-Pava, G. (2016). The role of industry factors and intangible assets in company performance in Colombia. Journal of Business Research, 69(10), 4377-4384. doi: 10.1016/j.jbusres.2016.03.060

Arrighetti, A., Landini, F, & Lasagni, A. (2014). Intangible assets and firm heterogeneity: Evidence from Italy. Research Policy. 43(1), 202-213. doi: 10.1016/j.respol.2013.07.015

Cabeza, L. F., Galindo, E., Prieto, C., Barreneche, C., & Fernández, I. (2015). Key performance indicators in thermal energy storage: Survey and assessment. Renewable Energy, 83, 820-827. doi: 10.1016/j.renene.2015.05.019

Carayannis, E., & Grigoroudis, E. (2014). Linking innovation, productivity, and competitiveness: implications for policy and practice. The Journal of Technology Transfer. 39(2), 199-218. doi: 10.1007/s1 0961-012-9295-2

Chen, T. (2013). A flexible way of modeling the long-term cost competitiveness of a semiconductor product. Robotics and Computer-Integrated Manufacturing, 29(3), 31-40. doi: 10.1016/j.rcim.2012.04.010

Díaz-Chao, A., Sainz-González, J., & Torrent-Sellens, J. (2016). The competitiveness of small network-firm: A practical tool. Journal of Business Research, 69(5), 1769-1774. doi: 10.1016/j.jbusres.2015.10.053

Domènech, L., March, H., & Saurí, D. (2013). Degrowth initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. Journal of Cleaner Production, 38, 44-55. doi: 10.1016/j.jclepro.2011.09.0

Durbach, I., Lahdelma, R., & Salminen, P. (2014). The analytic hierarchy process with stochastic judgements. European Journal of Operational Research, 238(2), 552-559. doi: 10.1016/j.ejor.2014.03.045

Fisk, P. (2009). O gênio dos negócios. Porto Alegre: Bookman.

Hoss, O., Rojo, C. A., & Grapeggia, M. (2010). Gestão de ativos intangíveis: da mensuração à competitividade por cenários. São Paulo: Atlas.

Huang, H., Lai, M., & Lin, T. (2011). Aligning intangible assets to innovation in biopharmaceutical industry. Expert Systems with Applications. 38(4), 3827-3834. doi: 10.1016/j.eswa.2010.09.043

Kaplan, R. S., & Norton, D. P. (2004). Mapas estratégicos: Balanced Scorecard: convertendo ativos intangíveis em resultados tangíveis. Rio de Janeiro: Elsevier.

Kocsis, T., Negny, S., Floquet, P., Meyer, X., & Rév, E. (2014). Case-Based Reasoning system for ma-thematical modelling options and resolution methods for production scheduling problems: case representation, acquisition and retrieval. Computers & Industrial Engineering, 77, 46-64. doi: 10.1016/j.cie.2014.09.012

Marinho, S. V., & Cagnin, C. (2014). The roles of FTA in improving performance measurement systems to enable alignment between business strategy and operations: insights from three practical cases. Futures, 59, 50-61. doi: 10.1016/j.futures.2014.01.015

Marques, G., Gourc, D., & Lauras, M. (2011). Multi-criteria performance analysis for decision making in project management. International Journal of Project Management, 29(8), 1057-1069. doi: 10.1016/j.ijproman.2010.10.002

Marques, K. F. S., Siluk, J. C. M., Neuenfeldt, A. L., Jr., & Cattelan, V. D. (2014). O Diagnóstico da inovação de uma empresa portuguesa em tempos de crise. Revista Gestão, Inovação e Tecnologias, 4(3), 1270-1282. doi: 10.7198/geintec.v4i3.452

Minello, I. F. (2010). Resiliência e Insucesso Empresarial. Um estudo exploratório sobre o comportamento resiliente e os estilos de enfrentamento do empreendedor em situações de insucesso empresarial, especificamente em casos de descontinuidade do negócio (Tese de Doutorado). Universidade de São Paulo, São Paulo, SP, Brasil.

Núcleo de Inovação e Competitividade [NIC] (2016). Projeto de Mensuração de Ativos Intangíveis em Empresas de Base Tecnológica: relatório técnico. Santa Maria, RS: Universidade Federal de Santa Maria.

Oliva, F. L., Sobral, M. C., Santos, S. A., Almeida, M. I. R., & Hildebrand e Grisi, C. C. (2011). Measuring the probability of innovation in technology-based companies. Journal of Manufacturing Technology Management, 22(3), 365-383. doi: 10.1108/17410381111112729

Oliveira, O. J. (2013). Guidelines for the integration of certifiable management systems in industrial companies. Journal of Cleaner Production, 57, 124-133. doi: 10.1016/j.jclepro.2013.06.037

Oliveira, V. H. M., & Martins, C. H. (2015). AHP: ferramenta multicritério para tomada de decisão – shopping centers. (1a. ed.). Curitiba: Appris.

Olson, E. M., & Slater, S. F. (2002). The balanced scorecard, competitive strategy and performance. Business Horizons, 45, 11-17. doi: 10.1016/S0007-6813(02)00198-2

Parmenter, D. (2010). Key performance indicators: developing, implementing, and using winning KPIs. New Jersey: Wiley.

Parmenter, D. (2012). Key performance indicators for government and non profit agencies. New Jersey: Wiley.

Porter, M. (2009). Competição. São Paulo: Campus.

Poveda-Bautista, R., García-Mélon, M., & Baptista, D. C. (2013). Competitiveness measurement system in the advertising sector. SpringerPlus. 2, 438. doi: 10.1186/2193-1801-2-438

Rosa, C. B., Siluk, J. C. M., & Dos Santos, A. M. (2016). Application of optimization techniques in the production of parts of martensitic stainless steel. The International Journal of Advanced Manufacturing Technology, 87(5-8), 2405-2413. doi: 10.1007/s00170-016-8621-5

Rosén, L., Back, P.-E., Söderqvist, T., Norrman, J., Brinkhoff, P., Norberg, T., Volchko, Y., Norin, M., Bergknut, M., & Döberl, G. (2015). A novel multi-criteria decision analysis approach to assessing the sustainability of contaminated land remediation. Science of The Total Environment, 511, 621-638. doi: 10.1016/j.scitotenv.2014.12.058

Sanches, P. L. B., & Machado, A. G. C. (2014). Estratégias de inovação sob a perspectiva da Resourced-Based View: análise e evidências em empresas de base tecnológica. Gestão & Produção, 21(1), 125-141. doi: 10.1590/S0104-530X2014005000005

Saaty, T. L. (1989). Método de Análise Hierárquica. São Paulo: McGraw-Hill.

Saaty, T. L., & Vargas, L. G. (2012). Methods, concepts & applications of the Hierarchy Process. New York: Springer.

Scarano, T. F., Siluk, J. C. M., Nara, E. O. B., Neuenfeldt, A. L., Jr., & Da Fontoura, F. B. B. (2014). Diagnóstico do desempenho organizacional em empresas do setor metal mecânico. Espacios, 35(3), 18.

Soetanto, D. P., & Jack, S. L. (2013). Business incubators and the networks of technology-based firms. The Journal of Technology Transfer, 38(4), 432-453. doi: 10.1007/s10961-011-9237-4

Storch, L. A., Nara, E. O. B., & Kipper, L. M. (2013). The use of process management based on a systemic approach. International Journal of Productivity and Performance Management, 62(7), 759-773. doi: 10.1108/IJPPM-12-2012-0134

Takashina, N. T., & Flores, M. C. (1996). Indicadores da qualidade e do desempenho: como estabelecer metas e medir resultados. Rio de Janeiro: Qualimark.

Teixeira, I. T., Romano, A. L., & Alves, A. G., F°. (2015). Indicadores-chave para medida de desempenho: Uma proposta para o caso das operadoras de planos de saúde. Revista Eletrônica Gestão & Saúde, 6(2), 1689-1712. doi: 10.18673/gs.v6i2.22495

Tsai, C. F., Lu, Y., & Yen, D. C. (2012). Determinants of intangible assets value: The data mining approach. Knowledge-Based Systems, 31, 67-77. doi: 10.1016/j.knosys.2012.02.007

Wang, G., & Singh, P. (2014). The evolution of CEO compensation over the organizational life cycle: A contingency explanation. Human Resource Management Review, 24(2), 144-159. doi: 10.1016/j.hrmr.2013.11.001

Wouters, M., & Kirchberger, M. A. (2015). Customer value propositions as interorganizational management accounting to support customer collaboration. Industrial Marketing Management, 46, 54-67. doi: 10.1016/j.indmarman.2015.01.005

Yeap, J. A. L., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250-258. doi: 10.1016/j.chb.2013.10.034

Zhü, K. (2014). Fuzzy analytic hierarchy process: Fallacy of the popular methods. European Journal of Operational Research, 236(1), 209-217. doi: 10.1016/j.ejor.2013.10.034

Downloads

Publicado

30.09.2019

Como Citar

Martins dos Santos, A., Mairesse Siluk, J. C., Bisognin Garlet, T., Marcuzzo, R., de Souza Savian, F., & Rech Graciano dos Santos, J. (2019). Modelagem para avaliação da competitividade em empresas de base tecnológica. Exacta, 17(3), 61–80. https://doi.org/10.5585/exactaep.v17n3.8260

Edição

Seção

Artigos