Business intelligence + lean manufacturing: a systematic literature review (2008-2018)

Authors

DOI:

https://doi.org/10.5585/exactaep.v19n1.11356

Keywords:

Business Intelligence, Lean Manufacturing, Decision-making, Systematic review

Abstract

Lean Manufacturing (LM) is a management philosophy supported by a group of techniques when combined and matured, reduce production time and cost, maximize customer value and minimize waste. For this, decision-making plays a fundamental role and becomes a critical point for this management philosophy. The Business Intelligence (BI) tool provides a data-driven approach to linking strategic business goals to managerial policies and operational action can be of great help to lean companies. Thus, the present study intends to analyze the main applications of the BI tools to support the decision making to the companies that apply the LM. With the support of the StArt, a systematic review software, an analysis of the current literature related to the research topic was done. The analysis allowed us to define BI application opportunities in companies that, in some way, use LM.

Downloads

Download data is not yet available.

Author Biography

Lorena Hernández Mastrapa, Universidade Metodista de Piracicaba

Possui graduação em Engenharia Industrial - Universidade Oscar Lucero Moya (2013). Mestrado em Engenharia de Produção, na área de Transporte e Logística da Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio). Atualmente é doutoranda (stricto sensu) do Programa de Pós-Graduação em Engenharia de Produção da Universidade Metodista de Piracicaba, São Paulo. Tem experiência na área de Engenharia de Produção, com ênfase em Sistemas Logísticos .

References

Achanga, P., Shehab, E., Roy, R. & Nelder, G. (2012) A fuzzy-logic advisory system for lean manufacturing within SMEs, International Journal of Computer Integrated Manufacturing, 25(9), pp. 839–852.

Ahmed, S., Freire, S., Feitosa, T., Zardo, L. &Almeida, R. (2018) AD-SISCOLO: a decision-support tool to aid the management of a cervical cancer screening program, Research on Biomedical Engineering, 34(1), pp. 19–30.

Bajo, J., Borrajo, M. L., De Paz, J. F., Corchado, J. M. & Pellicer, M. A. (2012) A multi-agent system for web-based risk management in small and medium business, Expert Systems with Applications. Elsevier Ltd, 39(8), pp. 6921–6931.

Brichni, M. Dupuy-Chessa, S., Gzara, L., Mandran, N. & Jeannet, C. (2017) BI4BI: A continuous evaluation system for Business Intelligence systems, Expert Systems with Applications. Elsevier Ltd, 76, pp. 97–112.

Chen, H., Chiang, R. H. & Storey, V. C. (2012) Business intelligence and analytics:from big data to big impact.Mis Quarterly, 36(4), 1165-1188.

Chung, W. & Tseng, T. L. (2012) Discovering business intelligence from online product reviews: A rule-induction framework, Expert Systems with Applications. Elsevier Ltd, 39(15), pp. 11870–11879.

Deif, A. M. & Elmaraghy, H. (2014) Cost performance dynamics in lean production leveling, Journal of Manufacturing Systems. The Society of Manufacturing Engineers, 33(4), pp. 613–623.

Escodeiro, J. R. & Pereira, N. A. (2009) Desenvolvimento De Indicadores Da Manufatura Enxuta Utilizando Ferramentas De Business Intelligence: Uma Aplicação Na Manufatura De Calçados, UFSCar - Universidade Federão de São Carlos, p. 162.

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A. &Belgamo, A. (2016) Improvements in the StArt tool to better support the systematic review process, Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering - EASE ’16, pp. 1–5.

Ghazanfari, M., Jafari, M. & Rouhani, S. (2011) A tool to evaluate the business intelligence of enterprise systems, Scientia Iranica. Elsevier B.V., 18(6), pp. 1579–1590.

Ghosh, B., & Scott, J. E. (2011). Antecedents and catalysts for developing a healthcareanalytic capability.Communications of the Association for Information Systems,29(1), 395-409.

Haque, W., Derksen, B. A., Calado, D., & Foster, L. (2015). Using business intelligencefor efficient inter-facility patient transfer.Stud Health Technol Inform, 208,170 -176.

Kao, H. Y.,Yu, M., Masud, M., Wu, W., Chen, L. & Wu, Y. (2016) Design and evaluation of hospital-based business intelligence system (HBIS): A foundation for design science research methodology, Computers in Human Behavior. Elsevier Ltd, 62, pp. 495–505.

Kitchenham, B. & Charters, S. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report. Keele University and University of Durham, version 2.3.

Mathrani, S. & Mathrani, A. (2013) ‘Utilizing enterprise systems for managing enterprise risks’, Computers in Industry. Elsevier B.V., 64(4), pp. 476–483.

Miniati, R., Frosini, F., & Dori, F. (2016). Integrated Risk and Quality Management in Hospital Systems. Clinical Engineering, 117–130.

Murray D. (2010) ' Intranets: Web-enabled data warehousing', The CRC Handbook of Modern Telecommunications.

Negash, S. (2004). Business intelligence.Communications of the Association for In-formation Systems, 13(1), 177e195.

Pereira, M. G. & Galvão, T. F. (2014) ‘Etapas de busca e seleção de artigos em revisões sistemáticas da literatura’, Epidemiologia e Serviços de Saúde, 23(2), pp. 369–371.

Pullan, T. T., Bhasi, M. & Madhu, G. (2013) ‘Decision support tool for lean product and process development’, Production Planning and Control, 24(6), pp. 449–464.

Shollo, A., & Galliers, R. D. (2015). Towards an understanding of the role of businessintelligence systems in organisational knowing.Information Systems Journal.

Taddeo, R., Simboli, A., Di Vincenzo, F. & Ioppolo, G. (2019) ‘A bibliometric and network analysis of Lean and Clean(er) production research (1990/2017)’, Science of the Total Environment. Elsevier B.V., 653, pp. 765–775.

Telhada, J., Dias, A. C., Sampaio, P., Pereira, G., & Carvalho, M. S. (2013). An Integrated Simulation and Business Intelligence Framework for Designing and Planning Demand Responsive Transport Systems. Computational Logistics, 98–112.

Tremblay, M. C., Hevner, A. R. & Berndt, D. J. (2012) ‘Design of an information volatility measure for health care decision making’, Decision Support Systems. Elsevier B.V., 52(2), pp. 331–341. oi: 10.1016/j.dss.2011.08.009.

Vallurupalli, V. & Bose, I. (2018) ‘Business intelligence for performance measurement: A case based analysis’, Decision Support Systems. Elsevier, 111(May), pp. 72–85.

Wan, H. & Chen, F. F. (2009) ‘Decision support for lean practitioners: A web-based adaptive assessment approach’, Computers in Industry, 60(4), pp. 277–283.

Wang, C. H. (2016) ‘A novel approach to conduct the importance-satisfaction analysis for acquiring typical user groups in business-intelligence systems’, Computers in Human Behavior. Elsevier Ltd, 54, pp. 673–681.

Published

2021-03-25

How to Cite

Mastrapa, L. H., Pontes de Assumpção, M. R., & Celso de Campos, F. (2021). Business intelligence + lean manufacturing: a systematic literature review (2008-2018). Exacta, 19(1), 17–34. https://doi.org/10.5585/exactaep.v19n1.11356

Most read articles by the same author(s)