Implicações das tecnologias híbridas de fabricação nos processos de reparo e remanufatura de peças no contexto da manutenção: uma revisão sistemática
DOI:
https://doi.org/10.5585/exactaep.v18n4.13270Palavras-chave:
Tecnologias híbridas de fabricação, Manufatura aditiva e subtrativa, Manutenção, Reparo, Remanufatura.Resumo
A flexibilidade das tecnologias híbridas de fabricação (HMT) para integrar os processos produtivos e as atividades de manutenção contribui para o aumento do ciclo de vida de peças funcionais ou remanufaturadas, agregando-lhes valor, dado que, pelo elevado custo de fabricação, não se justifica seu descarte. O objetivo deste artigo é investigar quais são os benefícios do uso das HMT nas atividades de reparo e remanufatura de peças no contexto da manutenção. A revisão sistemática da literatura relacionada ao tema mostrou que o emprego das HMT para executar atividades de reparo e remanufatura de peças como parte dos sistemas de manutenção está em expansão. Além disso, foi identificado que as aplicações das HMT visam o aumento do ciclo de vida dos produtos, a eficiência de recursos e remanufatura de peças no fim da vida útil como parte da reconfiguração da cadeia de valor.
Downloads
Referências
ABNT - Associação Brasileira de Normas Técnicas. (1994). ABNT NBR 5462 - Confiabilidade e Mantenabilidade. ABNT/CB-003 Eletricidade, 37.
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, (60), 677-688.
Caiazzo, F., Alfieri, V., Argenio, P., & Sergi, V. (2017). Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminium powder: Investigation and optimization. Advances in Mechanical Engineering, 9(8), 1–12.
Capello, E., & Previtali, B. (2006). The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire. Journal of Materials Processing Technology, 174, 223–232.
Capello, E., Colombo, D., & Previtali, B. (2005). Repairing of sintered tools using laser cladding by wire. Journal of Materials Processing Technology, 164–165, 990–1000.
Capes – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Disponível em http://www-periodicos-capes-gov-br.ez100.periodicos.capes.gov.br/ Acesso: fevereiro 2019.
Chong, L., Ramakrishna, S., & Singh, S. (2018). A review of digital manufacturing-based hybrid additive manufacturing processes. International Journal of Advanced Manufacturing Technology, 95, 2281–2300.
Cottam, R., & Brandt, M. (2011). Laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate: Effect of laser cladding parameters on microstructure. In: Physics Procedia, 12, 323–329.
Dasgupta, J. L., & Dinda, A. K. (2014). A descriptive framework for additive remanufacturing systems. International Journal of Rapid Manufacturing, 4(2/3/4), 199-218.
Despeisse, M., & Ford, S. (2015). The role of additive manufacturing in improving resource efficiency and sustainability. In: IFIP Advances in Information and Communication Technology, (3), ISSN 2058-8887.
Dutta, B., & Froes, S. (2017). The Additive Manufacturing (AM) of titanium alloys. Metal Powder Report, 72(2), 96-106.
Fahimnia, B., Tang, C., Davarzani, H. & Sarkis, J. (2015). Quantitative models for managing supply chain risks: a review. European Journal of Operational Research, 247(1), 1-15.
Faludi, J., Bayly, C., Bhogal, S., & Iribarne, M. (2015). Comparing environmental impacts of additive manufacturing vs. traditional machining via life-cycle assessment. Rapid Prototyping Journal, 21(1), 14-33.
Flynn, J. M., Shokrani, A., Newman, S. T., & Dhokia, V. (2016). Hybrid additive and subtractive machine tools - Research and industrial developments. International Journal of Machine Tools and Manufacture, (101), 79–101.
Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587.
Graf, B., Ammer, S., Gumenyuk, A., & Rethmeier, M. (2013). Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. In: Procedia CIRP, 11, 245–248.
Graf, B., Gumenyuk, A., & Rethmeier, M. (2012). Laser metal deposition as repair technology for stainless steel and titanium alloys. In: Physics Procedia, 83, 761 – 768.
Guessasma, S., Zhang, W., Zhu, J., Belhabib, S., & Nouri, H. (2015). Challenges of additive manufacturing technologies from an optimization perspective. International Journal for Simulation and Multidisciplinary Design Optimization, 6, (A9), 1-13.
Hernández-Mastrapa, L., Pontes-de Assumpção, M. R., & Tasé-Velázquez, D. R. (2020). Análisis bibliográfico sobre toma de decisiones en la servitización. EmTHYMÓS, Revista de Estudios Empresariales, 1(1), 21-34.
Ida - Institute for Defense Analyses. (2012). Emerging global trends in advanced manufacturing. IDA Paper P-4603. EE.UU, 248.
Ijomah, W. (2002). A model-based definition of the generic remanufacturing business process. Doctoral Thesis. University of Plymouth, USA.
Jones, J., Mcnutt, P., Tosi, R., Perry, C., & Wimpenny, D. (2012). Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine. 23rd Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA, 821-827.
Karunakaran, K., Suryakumar. S, Pushpa, V., & Akula, S. (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robotics and Computer-Integrated Manufacturing, 26(5), 490–499.
King, A. M., Burgess, S. C., Ijomah, W., & McMahon, C. A. (2006). Reducing waste: Repair, recondition, remanufacture or recycle? Sustainable Development, 14, 257–267.
Knofius, N., van der Heijden, M. C., & Zijm, W. H. M. (2019). Consolidating spare parts for asset maintenance with additive manufacturing. International Journal of Production Economics, 208(November 2018), 269–280.
Kohtala, C., & Hyysalo, S. (2015). Anticipated environmental sustainability of personal fabrication. Journal of Cleaner Production, 99, 333-344.
Lasemi, A., Xue, D., & Gu, P. Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Computer-Aided Design, 42, 641–54.
Le, V. T., Paris, H., & Mandil, G. (2015). Using additive and subtractive manufacturing technologies in a new remanufacturing strategy to produce new parts from End-of-Life parts. 22nd French Congress of Mechanics, Lyon, France, 1-8.
Le, V. T., Paris, H., & Mandil, G. (2017b). Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. Journal of Manufacturing Systems, 44, 243–254.
Le, V. T., Paris, H., & Mandil, G. (2017c). Environmental impact assessment of an innovative strategy based on an additive and subtractive manufacturing combination. Journal of Cleaner Production, 164, 508–523.
Le, V. T., Paris, H., & Mandil, G. (2018). Extracting features for manufacture of parts from existing components based on combining additive and subtractive technologies. International Journal on Interactive Design and Manufacturing (IJIDeM), 12, 525–536.
Le, V. T., Paris, H., Mandil, G., & Brissaud, D. (2017a). A direct material reuse approach based on additive and subtractive manufacturing technologies for manufacture of parts from existing components. In: Procedia CIRP, 61, 229–234.
Leino, M., Pekkarinen, J., & Soukka, R. (2016). The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing - Enabling circular economy. Physics Procedia, 83, 752–760.
Leunda, J., Soriano, C., Sanz, C., & Navas, V. G. (2011). Laser cladding of vanadium-carbide tool steels for die repair. In: Physics Procedia, 12, 345–352.
Liou, F., Wang, J., Prakash, S., & Joshi, Y. (2002). Laser Aided Part Repair-A Review. Proceedings ASME International Manufacturing Science and Engineering Conference (MSEC), 57-64.
Liu, R., Wang, Z., Sparks, T., Liou, F., & Nedic, C. (2017). Stereo vision-based repair of metallic components. Rapid Prototyping Journal, 23(1), 65-73.
Mastrapa, L. H., Assumpção, M. P., Tasé Velázquez, D. R., Gennaro, C. K., & de Oliveira, E. D. (2020). Product-Service System Modularization: A Systematic Review. In: Anisic Z., Lalic B., Gracanin D. (eds) Proceedings on 25th International Joint Conference on Industrial Engineering and Operations Management – IJCIEOM. IJCIEOM 2019. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham.
Miguel, P. A. C. (2012). Metodologia de pesquisa para engenharia de produção e gestão de operações. 2da Ed. – Rio de Janeiro: Elsevier: ABEPRO, ISBN 978-85-352-4850-0.
Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15, 932-943.
Nan, L., Liu, W., & Zhang, K. (2010). Laser remanufacturing based on the integration of reverse engineering and laser cladding. International Journal of Computer Applications in Technology, 37(2), 116-124.
Navrotsky, V., Graichen, A., & Brodin, H. (2015). Industrialization of 3D printing (additive manufacturing) for gas turbine components repair and manufacturing. VGB PowerTech, 12, 48-52.
Newman, S. T., Zhu, Z., Dhokia, V., & Shokrani, A. (2016). Process planning for additive and subtractive manufacturing technologies. CIRP Annals - Manufacturing Technology, (64), 467–470.
Petrat, T., Graf, B., Gumenyuk, A., & Rethmeier, M. (2016). Laser metal deposition as repair technology for a gas turbine burner made of inconel 718. In: Physics Procedia, 83, 761–768.
Pinto, K., & Xavier, J. N. (2009). Manutenção: função estratégica. 3ª ed. Rio de Janeiro. Qualitymark: Petrobrás, 384.
Ren, L., Eiamsa-Ard, K., Ruan, J., Liou, F. (2007). Part repairing using a hybrid manufacturing system. Proceedings of International Manufacturing Science and Engineering Conference, Atlanta, Georgia, USA, 1-8.
Ren, L., Padathu, A. P., Ruan, J., Sparks, T., & Liou, F. W. (2006). Three dimensional die repair using a hybrid manufacturing system. Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, EUA, 51-59.
Rickli, J. L., Dasgupta, J. L., Dinda, A. K. (2014). A descriptive framework for additive remanufacturing systems. International Journal of Rapid Manufacturing, 4, (2/3/4), 199-218.
Robinson, L., & Scott, J. (2014). Layers of complexity: making the promises possible for additive manufacturing of metals. Journal of the Minerals, Metals, and Materials Society, 66(11), 2197-2207.
Rottwinkel, B., Nölke, C., Kaierle, S., & Wesling, V. (2014). Crack repair of single crystal turbine blades using laser cladding technology. In: Procedia CIRP, 22, 263–267.
Singh, S., Ramakrishna, S., & Singh, S. (2017). Issues in additive manufacturing: A review. Journal of Manufacturing Processes, (25), 185–200.
Tasé-Velázquez, D. R., Camello-Lima, C. R., & Hernández-Mastrapa, L. (2020). Modelo para la gestión del mantenimiento de un sistema de fabricación híbrido con base en políticas corporativas y de producción. EmTHYMÓS, Revista de Estudios Empresariales, 1(2), 118-134.
Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22-37.
Vartanian, K. (2014). 3D Printing using powder metals choosing the right process for the right application. Materials & Assembly, 44-51.
Velázquez, D. R. T., Lima, C. R. C., Helleno, A. L., Mastrapa, L. H., Oliveira, E. D., & Gennaro, C. K. (2018). Esquema conceitual para gerenciamento da manutenção no contexto das tecnologias híbridas de manufatura. BTSym 2018 Proceedings, 1, 1-8.
Velázquez, D. R. T., Simon, A. T., Helleno, A. L., & Mastrapa, L. H. (2020). Implications of additive manufacturing on supply chain and logistics. Independent Journal of Management & Production, 11(4), 1279-1302.
Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178.
Wits, W. W., García, J. R. R., & Becker, J. M. J. (2016). How Additive Manufacturing Enables more Sustainable End-user Maintenance, Repair and Overhaul (MRO) Strategies. Procedia CIRP, 40, 693–698.
Xiao, Z.; Yang, Y.; Xiao, R.; Bai, Y.; Song, C.; Wang, D. (2018). Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Materials & Design, 143, 27-37.
Yu, J. H., Choi, Y. S., Shim, D. S., & Park, S. H. (2018). Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties. Optics and Laser Technology, 106, 87-93.
Zębala, W., & Plaza, M. Comparative study of 3- and 5-axis CNC centers for free-form machining of difficult-to-cut material. International Journal of Production Economics, 158, 345–358.
Zhang, X., Li, W., Cui, W., & Liou, F. (2018). Modeling of worn surface geometry for engine blade repair using Laser-aided Direct Metal Deposition process. Manufacturing Letters, 15PA, 1–4.
Zhu, Z., Dhokia, V., Nassehi, A., & Newman, S. T. (2013). A review of hybrid manufacturing processes-state of the art and future perspectives. International Journal of Computer Integrated Manufacturing, 26(7), 596–615.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Exacta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Resumo 511
- PDF 443