Potential Value Level: proposal for a value scale applied in RD&I projects in safety innovation with multiple decision makers
DOI:
https://doi.org/10.5585/2025.28281Keywords:
decision making, complex environment, Potential Value Level, PVL, multicriteria analysisAbstract
This paper aims to apply the Potential Value Level (PVL) scale to assess the value of Research, Development & Innovation (RD&I) in safety innovation in the oil and gas industry, as well as to assess the strengths, weaknesses, and threats with the existing literature. The methodology adopted involved the application of the Analytical Hierarchy Process (AHP) method structured in two layers, based on the criteria: Royalties, Shares, Intangibles, and Strategic. Data collection was carried out through interviews with seven experts, including professors, doctoral students, and professionals with experience in portfolio management. The analysis was conducted with the support of Microsoft Excel software, allowing the comparison of the PVL scale with the traditional TRL and CRL scales. The results indicated that the PVL scale is effective in prioritizing projects from the perspective of value generation, with emphasis on the intangible criterion, which is often neglected by traditional methods. However, as it is an indicator, it is expected to be combined with other indicators, and its calibration depends on a coherent choice of criteria. The multicriteria application demonstrated coherence in the assessments among decision makers and provided evidence on the usefulness of the PVL scale as a decision support tool. The theoretical contribution of the research lies in the proposal of an innovative value assessment model applied to the context of RD&I. In practical terms, the study offers managers a structured instrument for selecting innovation projects in security, aligned with organizational strategies and value creation in environments of high complexity and uncertainty.
References
Araújo, L. M. M., Maior, C. B. S., Lins, I. D., & Moura, M. J. das C. (2023). Technology selection and ranking: Literature review and current applications in oil & gas industry. Geoenergy Science and Engineering, 226, 211771. https://doi.org/10.1016/J.GEOEN.2023.211771
Arpa-e (2010). Advanced Research Projects Agency – Energy. Technology to market plan
Azizian, N. , Sarkani, S. , & Mazzuchi, T. (2009). A comprehensive review and analysis of maturity assessment approaches for improved decision support to achieve efficient defense acquisition. 20–22.
Belton, V., & Stewart, T. J. (2002). Multiple Criteria Decision Analysis. Kluwer Academic Publishers. Springer Science & Business Media.
Cornford, S. L., & Sarsfield, L. (2004). Quantitative methods for maturing and infusing advanced spacecraft technology. IEEE Aerospace Conference Proceedings, 1, 663–681. https://doi.org/10.1109/AERO.2004.1367652
Danesh, D., Ryan, M. J., & Abbasi, A. (2018). Multi-criteria decision-making methods for project portfolio management: a literature review. In Int. J. Management and Decision Making (Vol. 17, Issue 1).
de Souza, D. G. B., Dos Santos, E. A., Soma, N. Y., & da Silva, C. E. S. (2021). MCDM-Based R&D Project Selection: A Systematic Literature Review. Sustainability 2021, Vol. 13, Page 11626, 13(21), 11626. https://doi.org/10.3390/SU132111626
Er, A., Özkale, C., & Coşkun, S. B. (2024). Project portfolio selection criteria in the oil & gas industry and a decision support tool based on fuzzy Multimoora. Journal of Project Management, 9(3), 197–212. https://doi.org/10.5267/J.JPM.2024.5.002
Gerdsri, N., & Manotungvorapun, N. (2021). Readiness Assessment for IDE Startups: A Pathway toward Sustainable Growth. Sustainability 2021, Vol. 13, Page 13687, 13(24), 13687. https://doi.org/10.3390/SU132413687
GOMES, L. F. A. M., & GOMES, C. F. Simões. (2000). Tomada de decisão gerencial: enfoque multicritério. Atlas SA. https://scholar.google.com.br/citations?view_op=view_citation&hl=pt-BR&user=IZriVnYAAAAJ&citation_for_view=IZriVnYAAAAJ:jE2MZjpN3IcC
Gomes, L. L., Carlos De Lamare, |, Pinto, B., & Henrique De Castro, J. (2024). Uma Escala de Valor Aplicada a Projetos de PD&I: Casos de Uso em Projetos de Safety Innovation A Value Scale Applied to R&D Projects: Use Cases in Safety Innovation Projects. https://doi.org/10.48072/2525-7579.rog.2024
Harto, A. A. ; W. ;, Agung, A. ;, Ridwan, M. K., Li, G., Du, B., Liu, L., Chen, X., Lai, X., Ai, Y., Rahmanta, M. A., Harto, A. W., Agung, A., & Ridwan, M. K. (2023). Nuclear Power Plant to Support Indonesia’s Net Zero Emissions: A Case Study of Small Modular Reactor Technology Selection Using Technology Readiness Level and Levelized Cost of Electricity Comparing Method. Energies 2023, Vol. 16, Page 3752, 16(9), 3752. https://doi.org/10.3390/EN16093752
Jesus, V. M. de, Gomes, L. F. A. M., & Filardi, F. (2019). The selection of contract strategies using the analytic network process for oil and gas projects: a case study. Independent Journal of Management & Production, 10(2), 355–379. https://doi.org/10.14807/ijmp.v10i2.850
Kandakoglu, M., Walther, G., & Ben Amor, S. (2024). The use of multi-criteria decision-making methods in project portfolio selection: a literature review and future research directions. Annals of Operations Research, 332(1–3), 807–830. https://doi.org/10.1007/s10479-023-05564-3
Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. In Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press. https://books.google.com/books/about/Decisions_with_Multiple_Objectives.html?hl=pt-BR&id=1oEa-BiARWUC
Lee, H. Y., Heng, Y. P., Selvanathan, K., Chandrahasan, P., & Chemmangattuvalappil, N. G. (2024). Multi-Criteria Decision-Making Tools for Project Selection by International Conglomerates. Process Integration and Optimization for Sustainability, 8(2), 375–393. https://doi.org/10.1007/S41660-023-00376-1/TABLES/21
Liesiö, J., Salo, A., Keisler, J. M., & Morton, A. (2021). Portfolio decision analysis: Recent developments and future prospects. European Journal of Operational Research, 293(3), 811–825. https://doi.org/10.1016/J.EJOR.2020.12.015
Lima, Y. Q. de, Gomes, F. A. M., & Leoneti, A. B. (2023). DECOMMISSIONING OFFSHORE OIL AND GAS PRODUCTION SYSTEMS WITH SMAA-ExpTODIM. Pesquisa Operacional, 43, e267436. https://doi.org/10.1590/0101-7438.2023.043.00267436
Lima, Y. Q. de, & Gomes, L. F. A. M. (2021). Identificação e valoração dos critérios de decisão em projetos de descomissionamento offshore. Revista de Gestão e Projetos, 12(2), 9–27. https://doi.org/10.5585/gep.v12i2.19781
Lima, Y. Q. de, Gomes, L. F. A. M., & Leoneti, A. B. (2022). Towards the Green Economy: an MCDA approach to decommissioning offshore oil and gas production systems. Procedia Computer Science, 214(C), 337–343. https://doi.org/10.1016/J.PROCS.2022.11.183
Lima, Y. Q. de, Gomes, L. F. A. M., & Machado, M. A. S. (2023). O descomissionamento de sistemas de produção Offshore sob a perspectiva do método Electre III – SRF. Revista Gestão & Tecnologia, 23(1), 69–92. https://doi.org/10.20397/2177-6652/2023.v23i1.2330
Mankins, J. C. (1995). TECHNOLOGY READINESS LEVELS A White Paper.
Mankins, J. C. (2009). Technology readiness assessments: A retrospective. Acta Astronautica, 65(9–10), 1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058
Melo, R. T. de, Gomes, L. F. A. M., & Filardi, F. (2019). Project portfolio prioritization strategy to extend the service life of offshore platforms – a Prométhée V approach. Independent Journal of Management & Production, 10(5), 1421–1445. https://doi.org/10.14807/ijmp.v10i5.849
Nadarajah, S., & Secomandi, N. (2023). A review of the operations literature on real options in energy. European Journal of Operational Research, 309(2), 469–487. https://doi.org/10.1016/J.EJOR.2022.09.014
Nikolaichuk, L., Ignatiev, K., Filatova, I., & Shabalovac, A. (2023). Diversification of Portfolio of International Oil and Gas Assets using Cluster Analysis. International Journal of Engineering, 36(10), 1783–1792. https://doi.org/10.5829/IJE.2023.36.10A.06
Olechowski, A. L., Eppinger, S. D., Joglekar, N., & Tomaschek, K. (2020). Technology readiness levels: Shortcomings and improvement opportunities. Systems Engineering, 23(4), 395–408. https://doi.org/10.1002/sys.21533
Saaty, T. L. (1991). Some mathematical concepts of the analytic hierarchy process. Behaviormetrika, 18(29), 1–9. https://doi.org/10.2333/BHMK.18.29_1
Saaty, Thomas. L. (1994). How to Make a Decision: The Analytic Hierarchy Process. Interfaces, 24(6), 19–43. https://doi.org/10.1287/inte.24.6.19
Saaty, Thomas. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/ijssci.2008.017590
Tsiglianu, P., Romasheva, N., & Nenko, A. (2023). Conceptual Management Framework for Oil and Gas Engineering Project Implementation. Resources 2023, Vol. 12, Page 64, 12(6), 64. https://doi.org/10.3390/RESOURCES12060064
Vergara, S. C. (2016). Projetos e Relatórios de Pesquisa em administração (16th ed.). Atlas S/A.
Zuluaga, J. A. F., Escobar, J. F., Martínez, G. A. G., D’Aleman, J. C., & Vallejo, A. O. (2024). Model for measuring technological maturity for critical sector industries. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100194. https://doi.org/10.1016/J.JOITMC.2023.100194
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 André Martins Ismail, Leonardo Lima Gomes, Carlos De Lamare Bastian Pinto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Abstract 121
- pdf (Português (Brasil)) 84