Practices and barriers for big data projects
A case study on a large insurance company
DOI:
https://doi.org/10.5585/gep.v15i1.24673Palavras-chave:
Project management, IT projects, Big data analytics platform, Insurance industry.Resumo
The adoption of big data analytics is increasing in every major industry, demanding investments in new projects, technologies, architectures, and processes to allow the integration of big data platforms with legacy systems; however, many organizations have failed to incorporate it effectively into their decision-making processes and project benefits have not been adequately captured. This study aims to further investigate how a big data analytics project can be implemented in insurance companies. A case study was conducted on one of the largest insurance companies in Brazil with interviews and document analysis. The study identified five main practices that were adopted to successfully implement a big data analytics project (implement automatic autoscaling alerts, use specialized big data tools, integrate the platform with legacy systems, comply with privacy legislation, and ensure the documentation of technical architecture using business process modeling), as well as four barriers that prevent its proper adoption (complexity of access to multicloud data sources, high processing requirements of unstructured data analysis, failure to attend to business necessities at the right time, and project delays brought by bureaucratic interdepartmental processes); some of these have not previously been identified. Finally, an action plan to address these issues is presented.
Referências
Aiken, P., & Gorman, M. (2013). The Case for the Chief Data Officer: Recasting the C-Suite to Leverage Your Most Valuable Asset. Morgan Kaufmann Publishers.
Alharthi, A., Krotov, V., & Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(3), 285–292. https://doi.org/10.1016/j.bushor.2017.01.002
Ali, U., & Kidd, C. (2014). Barriers to effective configuration management application in a project context: An empirical investigation. International Journal of Project Management, 32(3), 508–518. https://doi.org/10.1016/j.ijproman.2013.06.005
Araz, O. M., Choi, T.-M., Olson, D. L., & Salman, F. S. (2020). Role of Analytics for Operational Risk Management in the Era of Big Data. Decision Sciences, 51(6), 1320–1346. https://doi.org/10.1111/deci.12451
Arumugam, S., & Bhargavi, R. (2019). A survey on driving behavior analysis in usage-based insurance using big data. Journal of Big Data, 6(1), 86. https://doi.org/10.1186/s40537-019-0249-5
Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in Studies of Information Systems. MIS Quarterly, 11(3), 369–386. https://doi.org/10.2307/248684
Berghout, E., Nijland, M., & Powell, P. (2011). Management of lifecycle costs and benefits: Lessons from information systems practice. Computers in Industry, 62(7), 755–764. https://doi.org/10.1016/j.compind.2011.05.005
Bohnert, A., Fritzsche, A., & Gregor, S. (2019). Digital agendas in the insurance industry: The importance of comprehensive approaches†. The Geneva Papers on Risk and Insurance - Issues and Practice, 44(1), 1–19. https://doi.org/10.1057/s41288-018-0109-0
Brave, S. A., Butters, R. A., & Fogarty, M. (2022). The perils of working with big data, and a SMALL checklist you can use to recognize them. Business Horizons, 65(4), 481–492. https://doi.org/10.1016/j.bushor.2021.06.004
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165. https://doi.org/10.2307/41703503
Collins, A. (2014). Big data skills to pay the big data bills. Technology Decisions.
Crittenden, V. L., & Crittenden, W. F. (2008). Building a capable organization: The eight levers of strategy implementation. Business Horizons, 51(4), 301–309. https://doi.org/10.1016/j.bushor.2008.02.003
Davenport, T. H., & Dyché, J. (2013). Big Data in Big Companies. SAS Institute Inc. https://www.sas.com/en_in/whitepapers/bigdata-bigcompanies-106461.html
Davenport, T. H., & Patil, D. J. (2012, October 1). Data Scientist: The Sexiest Job of the 21st Century. Harvard Business Review. https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
Deloitte. (2021). Pesquisa Febraban de Tecnologia Bancária. https://portal.febraban.org.br/pagina/3106/48/pt-br/pesquisa
Deloitte. (2023). Insurance Outlook. https://www2.deloitte.com/content/dam/insights/articles/us175368_cfs_fsi-outlook-insurance/DI_US175368_CFS_FSI-Outlook-Insurance.pdf
Demchenko, Y., Grosso, P., De Laat, C., & Membrey, P. (2013). Addressing big data issues in scientific data infrastructure. In 2013 International conference on collaboration technologies and systems (CTS) (pp. 48-55). IEEE.
Dykes, B. (2017). Why Companies Must Close the Data Literacy Divide. Forbes. https://www.forbes.com/sites/brentdykes/2017/03/09/why-companies-must-close-the-data-literacy-divide/
Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of Management Review, 14(4), 532–550. https://doi.org/10.5465/AMR.1989.4308385
Francisco, E. D. R., Kugler, J. L., Kang, S. M., Silva, R., & Whigham, P. A. (2019). Beyond technology: Management challenges in the Big Data era. Revista de Administração de Empresas, 59, 375-378. https://doi.org/10.1590/S0034-759020190603
Gartner. (2021). 2022 CIO and Technology Executive Agenda: An Insurance Perspective. https://www.gartner.com/document/4008149
Gökalp, M. O., Gökalp, E., Kayabay, K., Koçyiğit, A., & Eren, P. E. (2022). The development of the data science capability maturity model: survey-based research. Online Information Review, 46(3), 547-567. https://doi.org/10.1108/OIR-10-2020-0469
Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
Hambrick, D. C., & Mason, P. A. (1984). Upper echelons: The organization as a reflection of its top managers. Academy of management review, 9(2), 193-206. https://doi.org/10.5465/amr.1984.4277628
Hambrick, D. C. (2007). Upper echelons theory: An update. Academy of management review, 32(2), 334-343. https://doi.org/10.5465/amr.2007.24345254
Hanafy, M., & Ming, R. (2021). Machine Learning Approaches for Auto Insurance Big Data. Risks, 9(2), Article 2. https://doi.org/10.3390/risks9020042
Herschel, G., Brethenoux, E., Idoine, C., Kronz, A., Hunter, E., & Horvath, M. (2019). Predicts 2019: Analytics and BI Strategy. https://www.gartner.com/document/3896764
Hoffman, S., & Podgurski, A. (2013). Big Bad Data: Law, Public Health, and Biomedical Databases. Journal of Law, Medicine & Ethics, 41(S1), 56–60. https://doi.org/10.1111/jlme.12040
Interbrand. (2022). Marcas Brasileiras Mais Valiosas 2021. https://learn.interbrand.com/hubfs/INTERBRAND/MBMV2021.pdf
Jin, M., & Yao, L. (2022). Influence Mechanism of Educational Leadership on Environmental Accounting Based on Big Data Algorithm. Journal of environmental and public health, 2022, 5690230. https://doi.org/10.1155/2022/5690230
Johnson, J. E. (2012). Big Data + Big Analytics = Big Opportunity. Financial Executives International. https://www.financialexecutives.org/FEI-Daily/March-2015/big-data-big-analytics-big-opportunity.aspx
Jones, M. (2013, April 1). Big Data Raises Big Questions. Government Technology. https://www.govtech.com/archive/Big-Data-Raises-Big-Questions.html
Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 78–85. https://doi.org/10.1145/2500873
Kronz, A., Jaffri, A., Tapadinhas, J., Sun, J., & Herschel, G. (2021). Predicts 2021: Analytics, BI and Data Science Solutions—Pervasive, Democratized and Composable. Gartner. https://www.gartner.com/document/code/735777
Krotov, V., & Johnson, L. (2022). Big web data: Challenges related to data, technology, legality, and ethics. Business Horizons. https://doi.org/10.1016/j.bushor.2022.10.001
Larsson, R. (1993). Case survey methodology: Quantitative analysis of patterns across case studies. Academy of management Journal, 36(6), 1515-1546. https://doi.org/10.5465/256820
LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics, and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506
Li, T., Kou, G., & Peng, Y. (2020). Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods. Information Systems, 91, 101494. https://doi.org/10.1016/j.is.2020.101494
Marnewick, C., & Marnewick, A. L. (2022). Benefits realisation in an agile environment. International Journal of Project Management, 40(4), 454–465. https://doi.org/10.1016/j.ijproman.2022.04.005
Martinsuo, M., & Huemann, M. (2021). Designing case study research. International Journal of Project Management, 39(5), 417–421. https://doi.org/10.1016/j.ijproman.2021.06.007
Mayhew, H., Saleh, T., & Williams, S. (2016). Making data analytics work for you—Instead of the other way around | McKinsey. McKinsey Quarterly. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/making-data-analytics-work-for-you-instead-of-the-other-way-around
Mazzei, M. J., & Noble, D. (2017). Big data dreams: A framework for corporate strategy. Business Horizons, 60(3), 405–414. https://doi.org/10.1016/j.bushor.2017.01.010
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
Mikalef, P., Giannakos, M. N., Pappas, I. O., & Krogstie, J. (2018). The human side of big data: Understanding the skills of the data scientist in education and industry. In 2018 IEEE global engineering education conference (EDUCON) (pp. 503-512). IEEE. https://doi.org/10.1109/EDUCON.2018.8363273
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004
Miles, M., & Huberman, M. (1994). Qualitative Data Analysis: An Expanded Sourcebook (Second Edition). Sage Publications.
Miller, S. (2014). Collaborative Approaches Needed to Close the Big Data Skills Gap. Journal of Organization Design, 3(1), 26. https://doi.org/10.7146/jod.9823
Nie, Y., Talburt, J., Dagtas, S., & Feng, T. (2019). The influence of chief data officer presence on firm performance: does firm size matter? Industrial Management & Data Systems, 119(3), 495-520. https://doi.org/10.1108/IMDS-03-2018-0101
PMI (2017). Agile Practice Guide. Project Management Institute.
Moraes, H. R. O. C., Cunha, M., Terlizzi, M. A. (2017). IT indicators and organizational performance: a study of the retail sector in Brazil. In CONF-IRM 2017. https://aisel.aisnet.org/confirm2017/16
Pour, M. J., Abbasi, F., & Sohrabi, B. (2023). Toward a Maturity Model for Big Data Analytics: A Roadmap for Complex Data Processing. International Journal of Information Technology & Decision Making, 22(01), 377-419. https://doi.org/10.1142/S0219622022500390
Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature medicine, 25(1), 37-43. https://doi.org/10.1038/s41591-018-0272-7
Reggio, G., & Astesiano, E. (2020). Big-Data/Analytics Projects Failure: A Literature Review. 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 246–255. https://doi.org/10.1109/SEAA51224.2020.00050
Rieley, M. (2022). Big data adds up to opportunities in math careers. U.S. Bureau of Labor Statistics. https://www.bls.gov/opub/btn/volume-7/big-data-adds-up.htm
Rijmenam, M. van. (2014). Think Bigger: Developing a Successful Big Data Strategy for Your Business (Illustrated edition). AMACOM.
Rogers, P., Meehan, P., & Tanner, S. (2007). Building a winning culture. Bain & Company. https://media.bain.com/Images/BB_Building_winning_culture.pdf
Ross, J. W., Beath, C. M., & Quaadgras, A. (2013). You May Not Need Big Data After All. Harvard Business Review. https://hbr.org/2013/12/you-may-not-need-big-data-after-all
Sanchez, O. P. (2017). Cost and time project management success factors for information systems development projects. International Journal of Project Management, 19. https://doi.org/10.1016/j.ijproman.2017.09.007
Sarker, S., Xiao, X., & Beaulieu, T. (2012). Toward an Anatomy of “Successful” Qualitative Research Manuscripts in IS: A Critical Review and Some Recommendations. In ICIS 2012 Proceedings. https://aisel.aisnet.org/icis2012/proceedings/ResearchMethods/12
Seth, P., & Gulati, K. (2022). Use of Wearable and Health Applications in Insurance Industry Using Internet of Things and Big Data. In Big Data: A Game Changer for Insurance Industry (pp. 1–13). Emerald Publishing Limited.
Siggelkow, N. (2007). Persuasion with Case Studies. Academy of Management Journal, 50(1), 20–24. https://doi.org/10.5465/AMJ.2007.24160882
Silveira, M., Marcolin, C. B., & Freitas, H. M. R. (2015). Uso Corporativo do Big Data: Uma Revisão de Literatura. Revista de Gestão e Projetos, 6(3), Article 3. https://doi.org/10.5585/gep.v6i3.369
Sithambaram, J., Nasir, M. H. N. B. M., & Ahmad, R. (2021). Issues and challenges impacting the successful management of agile-hybrid projects: A grounded theory approach. International Journal of Project Management, 39(5), 474–495. https://doi.org/10.1016/j.ijproman.2021.03.002
Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
Sood, K., Dhanaraj, R. K., Balamurugan, B., Grima, S., & Maheshwari, R. U. (Eds.). (2022). Big Data: A Game Changer for Insurance Industry. Emerald Publishing Limited.
Statista. (2022). Big data market size revenue forecast worldwide from 2011 to 2027. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
Susep. (2022). Painel de Inteligência do Mercado de Seguros. https://www2.susep.gov.br/safe/menuestatistica/pims.html
Tabesh, P., Mousavidin, E., & Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), 347–358. https://doi.org/10.1016/j.bushor.2019.02.001
Terlizzi, M. A., Brandimarte, L., Brown, S., & Sanchez, O. P. (2019). Privacy Concerns and Protection Motivation Theory in the Context of Mobile Banking. In the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14, 2019. https://aisel.aisnet.org/ecis2019_rp/24
Terlizzi, M. A., Albertin, A. L., & de Moraes, H. R. O. C. (2017). IT benefits management in financial institutions: Practices and barriers. International Journal of Project Management, 35(5), 763–782. https://doi.org/10.1016/j.ijproman.2017.03.006
Terlizzi, M. A., de Souza Meirelles, F., & de Moraes, H. R. O. C. (2016). Barriers to the use of an IT Project Management Methodology in a large financial institution. International Journal of Project Management, 34(3), 467-479. https://doi.org/10.1016/j.ijproman.2015.12.005
Terlizzi, M. A., Bento, D. R., & Biancolino, C. A. (2014). Auditoria de Projetos no Banco Itaú. Revista Inovação, Projetos e Tecnologias, 2(1), 98-114. https://doi.org/10.5585/iptec.v2i1.17
Trelles, O., Prins, P., Snir, M., & Jansen, R. C. (2011). Big data, but are we ready? Nature Reviews Genetics, 12(3), Article 3. https://doi.org/10.1038/nrg2857-c1
Trivedi, S., & Malik, R. (2022). Blockchain Technology as an Emerging Technology in the Insurance Market. In Big Data: A Game Changer for Insurance Industry (pp. 81–100). Emerald Publishing Limited.
Turner, R., & Ledwith, A. (2018). Project Management in Small to Medium-Sized Enterprises: Fitting the Practices to the Needs of the Firm to Deliver Benefit. Journal of Small Business Management, 56(3), 475–493. https://doi.org/10.1111/jsbm.12265
Tsai, J. C.-A., Jiang, J. J., Klein, G., & Hung, S.-Y. (2023). Task Conflict Resolution in Designing Legacy Replacement Systems. Journal of Management Information Systems, 40(3), 1009-1034. https://doi.org/10.1080/07421222.2023.2229120
Venkatesh, S. (2019). Big Data—Can it make a big impact in the Insurance sector? Journal of the Insurance Institute of India, 6(4), 92–97.
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023
Villarejo-Ramos, Á. F., & Cabrera-Sánchez, J.-P. (2019). Factors affecting the adoption of Big Data analytics in companies. RAE - Revista de Administracao de Empresas, 59(6), 415-429. https://doi.org/10.1590/S0034-759020190607
Whetten, D. A. (1989). What constitutes a theoretical contribution?. Academy of management review, 14(4), 490-495. https://doi.org/10.5465/amr.1989.4308371
Whyte, J., Stasis, A., & Lindkvist, C. (2016). Managing change in the delivery of complex projects: Configuration management, asset information and ‘big data.’ International Journal of Project Management, 34(2), 339–351. https://doi.org/10.1016/j.ijproman.2015.02.006
Yang, W., & Zhou, J. (2021). Service Innovation of Insurance Data Based on Cloud Computing in the Era of Big Data. Complexity, 1–10. https://doi.org/10.1155/2021/2303129
Yin, R. K. (2017). Case Study Research and Applications: Design and Methods (6th ed.). Sage Publications, Inc.
Zettelmeyer, F. (2015). A Leader’s Guide to Data Analytics. Kellogg Insight. https://insight.kellogg.northwestern.edu/article/a-leaders-guide-to-data-analytics
Zia, A., & Kalia, P. (2022). Emerging Technologies in Insurance Sector: Evidence from Scientific Literature. Big Data: A Game Changer for Insurance Industry, 43–63.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Revista de Gestão e Projetos
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.