Do 30 minutes of active video games at a moderate-intensity promote glycemic and cardiovascular changes?

Authors

DOI:

https://doi.org/10.5585/conssaude.v18n3.13962

Keywords:

Physical exertion, Diabetes Mellitus, Blood pressure, Cardiovascular system, Motivation.

Abstract

Aim: To analyze acute glycemic, cardiovascular variables, and level of enjoyment (LE) in response to active video games (AVG) in adults.


Methods: Fourteen adults performed a 30-minute AVG session. Heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure, double product (DP) and blood glucose (BG) were recorded at rest, immediately after and at 30 minutes after AVG session. At the end of the session, participants reported the rating of perceived exertion (RPE, 6-20 scale) and LE (0-10 scale).


Results: Participants reached 55.5% HR reserve with high RPE (Mean=15). BG decreased (−10.3 mg·dL−1), and HR (+85 bpm), SBP (+23.8 mm Hg) and DP (+12852 mm Hg × bpm) increased immediately after the session and returned to resting levels after 30 minutes. DBP did not present statiscal changes over time. High LE levels were found (Mean=8.6).


Conclusion: A 30-minute AVG session at moderate-intensity was very enjoyable, effective in reducing blood glucose levels acutely and promote safe cardiovascular acute changes in adults.

Downloads

Download data is not yet available.

References

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-59. doi: 10.1249/MSS.0b013e318213fefb.

American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care. 2014;37 Suppl 1:S14-80. doi: 10.2337/dc14-S014.

Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423-34. doi: 10.1249/mss.0b013e3180616b27.

Wojtaszewski JFP, Pilegaard H, Dela F. Resistance exercise training and the management of diabetes. In: Hawley JA, Zierath JR, editors. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. Champaign: Human Kinetics; 2008.

van ’t Riet J, Crutzen R, Lu AS. How effective are active videogames among the young and the old? Adding meta-analyses to two recent systematic reviews. Games Health J. 2014;3(5):311-8. doi: 10.1089/g4h.2014.0005.

Mellecker R, Lyons EJ, Baranowski T. Disentangling fun and enjoyment in exergames using an expanded design, play, experience framework: a narrative review. Games Health J. 2013;2(3):142-9. doi: 10.1089/g4h.2013.0022.

Brito-Gomes JL, Perrier-Melo RJ, Oliveira SFM, Guimarães FJSP, Costa MC. Physical effort, energy expenditure, and motivation in structured and unstructured active video games: a randomized controlled trial. Hum Mov. 2016;17(3):190-8. doi: 10.1515/humo-2016-0021.

Brito-Gomes JL, Perrier-Melo RJ, Wikstrom EA, Costa MC. Improving aerobic capacity through active videogames: a randomized controlled trial. Motriz: J Phys Ed. 2015;21:305-11. doi: 10.1590/S1980-65742015000300012

Barry G, Tough D, Sheerin P, Mattinson O, Dawe R, Board E. Assessing the physiological cost of active videogames (Xbox Kinect) versus sedentary videogames in young healthy males. Games Health J. 2016;5(1):68-74. doi: 10.1089/g4h.2015.0036.

Perrier-Melo RJ, Brito-Gomes JL, Costa MC. The use of active videogames in the non-pharmacological treatment of diabetes mellitus in the elderly: an integrative review [in Portuguese]. R Bras Ci Saúde. 2015;19(2):157-62. doi: 10.4034/RBCS.2015.19.02.11.

Soltani P, Salesi M. Effects of exergame and music on acute exercise responses to graded treadmill running. Games Health J. 2013;2(2):75-80. doi: 10.1089/g4h.2012.0077.

Dohm GL. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol (1985). 2002;93(2):782-7. doi: 10.1152/japplphysiol.01266.2001.

Thin AG, Hansen L, McEachen D. Flow experience and mood states while playing body movement-controlled video games. Games Cult. 2011;6(5):414-28. doi: doi:10.1177/1555412011402677.

Stroud LC, Amonette WE, Dupler TL. Metabolic responses of upper-body accelerometer-controlled video games in adults. Appl Physiol Nutr Metab. 2010;35(5):643-9. doi: 10.1139/H10-058.

Brito-Gomes J, Oliveira L, Perrier-Melo R, Santos J, Guimarães FJSP, Costa MC. Acute intensity and motivation to play: comparison of structured and unstructured active video games - a pilot study. Int Phys Med Rehab J. 2018;3(1):79-83. doi: 10.15406/ipmrj.2018.03.00080.

Neves LE, Ceravolo MP, Silva E, De Freitas WZ, Da Silva FF, Higino WP, et al. Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect. J Phys Ther Sci. 2015;27(9):2863-5. doi: 10.1589/jpts.27.2863.

Riddell MC, Burr J. Evidence-based risk assessment and recommendations for physical activity clearance: diabetes mellitus and related comorbidities. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S154-89. doi: 10.1139/h11-063.

Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 4th ed. New York: Springer; 2010.

Marfell-Jones M, Stewart A, Olds T, Ridder H. International standards for anthropometric assessment. New Zealand: International Society for the Advancement of Kinanthropometry; 2012.

Clar C, Barnard K, Cummins E, Royle P, Waugh N. Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assess. 2010;14(12):1-140. doi: 10.3310/hta14120.

Ahearn EP. The use of visual analog scales in mood disorders: a critical review. J Psychiat Res. 1997;31(5):569-79. doi: 10.1016/S0022-3956(97)00029-0.

Thin AG, Brown C, Meenan P. User experiences while playing dance-based exergames and the Influence of different body motion sensing technologies. Int J Comput Games Tech. 2013;2013:7. doi: 10.1155/2013/603604.

Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92. doi:

Perrier-Melo RJ, Brito-Gomes JL, Fernandes MSS, Pereira SVVN, Costa MC. Incidence of injuries with the practice of active video games. MTP & Rehab Journal. 2015;13:2-13. doi: 10.17784/mtprehabjournal.2015.13.211.

World Heritage Encyclopedia. Kinect Adventures! Honolulu: World Heritage Encyclopedia™; 2017.

Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):105-25. doi: 10.1037//1082-989X.7.1.105.

Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New Jersey: Lawrence Erlbaum; 1988.

Ruscio J. A probability-based measure of effect size: robustness to base rates and other factors. Psychol Methods. 2008;13(1):19-30. doi: 10.1037/1082-989X.13.1.19.

Romero SA, Minson CT, Halliwill JR. The cardiovascular system after exercise. J Appl Physiol (1985). 2017;122(4):925-32. doi: 10.1152/japplphysiol.00802.2016.

Sadrzadeh Rafie AH, Sungar GW, Dewey FE, Hadley D, Myers J, Froelicher VF. Prognostic value of double product reserve. Eur J Cardiovasc Prev Rehabil. 2008;15(5):541-7. doi: 10.1097/HJR.0b013e328305deef.

Published

2020-04-14

How to Cite

1.
Brito-Gomes JL de, Oliveira L dos S, Vancea DMM, Costa M da cunha. Do 30 minutes of active video games at a moderate-intensity promote glycemic and cardiovascular changes?. Cons. Saúde [Internet]. 2020 Apr. 14 [cited 2024 Jul. 17];18(3):389-401. Available from: https://periodicos.uninove.br/saude/article/view/13962

Issue

Section

Artigos