30 minutos de vídeo game ativo a uma intensidade moderada promovem alterações glicêmicas e cardiovasculares?

Autores

DOI:

https://doi.org/10.5585/conssaude.v18n3.13962

Palavras-chave:

Esforço Físico, Diabetes Mellitus, Pressão Arterial, Sistema Cardiovascular, Motivação.

Resumo

Objetivo: Analisar glicemia aguda, variáveis cardiovasculares e nível de satisfação à prática (LE) de adultos saudáveis em resposta aos videogames ativos (AVG).


Métodos: Quatorze adultos realizaram uma sessão de AVG de 30 minutos. Frequência cardíaca (FC), pressão arterial sistólica (PAS) e diastólica (PAD), duplo produto (DP) e glicemia foram registrados em repouso, imediatamente após e 30 minutos após sessão de AVG. Ao final, os participantes relataram percepção subjetiva de esforço (PSE, escala 6-20) e LE (escala 0-10).


Resultados: Os participantes alcançaram 55,5% da reserva da FC e PSE elevada (Média=15). A glicemia reduziu (−10,3 mg·dL−1) e FC (+85 bpm), PAS (+23,8 mm Hg) e DP (+12852 mm Hg × bpm) aumentaram imediatamente após a sessão e retornaram aos valores de repouso após 30 minutos. A PAD não apresentou alterações significantes ao longo do tempo. Níveis elevados de LE foram encontrados (Média=8,6).


Conclusão: Uma sessão de 30 minutos de AVG em intensidade moderada reduziu a glicose sanguínea e promoveu alterações hemodinâmicas seguras e alto nível de satisfação em adultos.

Downloads

Não há dados estatísticos.

Referências

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-59. doi: 10.1249/MSS.0b013e318213fefb.

American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care. 2014;37 Suppl 1:S14-80. doi: 10.2337/dc14-S014.

Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423-34. doi: 10.1249/mss.0b013e3180616b27.

Wojtaszewski JFP, Pilegaard H, Dela F. Resistance exercise training and the management of diabetes. In: Hawley JA, Zierath JR, editors. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. Champaign: Human Kinetics; 2008.

van ’t Riet J, Crutzen R, Lu AS. How effective are active videogames among the young and the old? Adding meta-analyses to two recent systematic reviews. Games Health J. 2014;3(5):311-8. doi: 10.1089/g4h.2014.0005.

Mellecker R, Lyons EJ, Baranowski T. Disentangling fun and enjoyment in exergames using an expanded design, play, experience framework: a narrative review. Games Health J. 2013;2(3):142-9. doi: 10.1089/g4h.2013.0022.

Brito-Gomes JL, Perrier-Melo RJ, Oliveira SFM, Guimarães FJSP, Costa MC. Physical effort, energy expenditure, and motivation in structured and unstructured active video games: a randomized controlled trial. Hum Mov. 2016;17(3):190-8. doi: 10.1515/humo-2016-0021.

Brito-Gomes JL, Perrier-Melo RJ, Wikstrom EA, Costa MC. Improving aerobic capacity through active videogames: a randomized controlled trial. Motriz: J Phys Ed. 2015;21:305-11. doi: 10.1590/S1980-65742015000300012

Barry G, Tough D, Sheerin P, Mattinson O, Dawe R, Board E. Assessing the physiological cost of active videogames (Xbox Kinect) versus sedentary videogames in young healthy males. Games Health J. 2016;5(1):68-74. doi: 10.1089/g4h.2015.0036.

Perrier-Melo RJ, Brito-Gomes JL, Costa MC. The use of active videogames in the non-pharmacological treatment of diabetes mellitus in the elderly: an integrative review [in Portuguese]. R Bras Ci Saúde. 2015;19(2):157-62. doi: 10.4034/RBCS.2015.19.02.11.

Soltani P, Salesi M. Effects of exergame and music on acute exercise responses to graded treadmill running. Games Health J. 2013;2(2):75-80. doi: 10.1089/g4h.2012.0077.

Dohm GL. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol (1985). 2002;93(2):782-7. doi: 10.1152/japplphysiol.01266.2001.

Thin AG, Hansen L, McEachen D. Flow experience and mood states while playing body movement-controlled video games. Games Cult. 2011;6(5):414-28. doi: doi:10.1177/1555412011402677.

Stroud LC, Amonette WE, Dupler TL. Metabolic responses of upper-body accelerometer-controlled video games in adults. Appl Physiol Nutr Metab. 2010;35(5):643-9. doi: 10.1139/H10-058.

Brito-Gomes J, Oliveira L, Perrier-Melo R, Santos J, Guimarães FJSP, Costa MC. Acute intensity and motivation to play: comparison of structured and unstructured active video games - a pilot study. Int Phys Med Rehab J. 2018;3(1):79-83. doi: 10.15406/ipmrj.2018.03.00080.

Neves LE, Ceravolo MP, Silva E, De Freitas WZ, Da Silva FF, Higino WP, et al. Cardiovascular effects of Zumba® performed in a virtual environment using XBOX Kinect. J Phys Ther Sci. 2015;27(9):2863-5. doi: 10.1589/jpts.27.2863.

Riddell MC, Burr J. Evidence-based risk assessment and recommendations for physical activity clearance: diabetes mellitus and related comorbidities. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S154-89. doi: 10.1139/h11-063.

Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 4th ed. New York: Springer; 2010.

Marfell-Jones M, Stewart A, Olds T, Ridder H. International standards for anthropometric assessment. New Zealand: International Society for the Advancement of Kinanthropometry; 2012.

Clar C, Barnard K, Cummins E, Royle P, Waugh N. Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assess. 2010;14(12):1-140. doi: 10.3310/hta14120.

Ahearn EP. The use of visual analog scales in mood disorders: a critical review. J Psychiat Res. 1997;31(5):569-79. doi: 10.1016/S0022-3956(97)00029-0.

Thin AG, Brown C, Meenan P. User experiences while playing dance-based exergames and the Influence of different body motion sensing technologies. Int J Comput Games Tech. 2013;2013:7. doi: 10.1155/2013/603604.

Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92. doi:

Perrier-Melo RJ, Brito-Gomes JL, Fernandes MSS, Pereira SVVN, Costa MC. Incidence of injuries with the practice of active video games. MTP & Rehab Journal. 2015;13:2-13. doi: 10.17784/mtprehabjournal.2015.13.211.

World Heritage Encyclopedia. Kinect Adventures! Honolulu: World Heritage Encyclopedia™; 2017.

Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):105-25. doi: 10.1037//1082-989X.7.1.105.

Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New Jersey: Lawrence Erlbaum; 1988.

Ruscio J. A probability-based measure of effect size: robustness to base rates and other factors. Psychol Methods. 2008;13(1):19-30. doi: 10.1037/1082-989X.13.1.19.

Romero SA, Minson CT, Halliwill JR. The cardiovascular system after exercise. J Appl Physiol (1985). 2017;122(4):925-32. doi: 10.1152/japplphysiol.00802.2016.

Sadrzadeh Rafie AH, Sungar GW, Dewey FE, Hadley D, Myers J, Froelicher VF. Prognostic value of double product reserve. Eur J Cardiovasc Prev Rehabil. 2008;15(5):541-7. doi: 10.1097/HJR.0b013e328305deef.

Downloads

Publicado

14.04.2020

Como Citar

1.
Brito-Gomes JL de, Oliveira L dos S, Vancea DMM, Costa M da cunha. 30 minutos de vídeo game ativo a uma intensidade moderada promovem alterações glicêmicas e cardiovasculares?. Cons. Saúde [Internet]. 14º de abril de 2020 [citado 17º de julho de 2024];18(3):389-401. Disponível em: https://periodicos.uninove.br/saude/article/view/13962

Edição

Seção

Artigos