Uma metodologia de apoio à tomada de decisão para a seleção de materiais no desenvolvimento de projetos de cadeiras de rodas

Marcia Danieli Szeremeta Spak, Aldo Braghini Junior, João Carlos Colmenero

Resumo


Uma das principais etapas de um projeto de cadeira de rodas é a definição de sua estrutura, que deve ser resistente para possibilitar a sua utilização em vários ambientes, leve para evitar a fadiga e possíveis problemas de saúde nos membros superiores do usuário, e possuir um custo adequado. O objetivo deste artigo é propor um método para a seleção do material da estrutura da cadeira de rodas de modo a auxiliar na etapa de desenvolvimento e melhoria de projetos de cadeiras de rodas. Para isso, foi empregado o método multicritério de tomada de decisão Analytic Hierarchy Process (AHP), o qual considera critérios quantitativos e qualitativos predeterminados para classificar as alternativas analisadas. O método foi aplicado para a seleção do material da estrutura de uma cadeira de rodas considerando dez alternativas (aços, ligas de alumínio e titânio). Nessa análise, identificou-se que a liga de alumínio A7003-T5, é o melhor material para a estrutura de cadeiras de rodas.


Palavras-chave


Tomada de decisão; AHP; Seleção de materiais; Cadeira de rodas.

Texto completo:

PDF

Referências


Ahmad, M. N., Maidin, N. A., Rahman, M. H. A., & Osman, M. H. (2017). Conceptual Design Selection of Manual Wheelchair for Elderly by Analytical Hierarchy Process (AHP) Method: A Case Study. International Journal of Applied Engineering Research, 12, 6710-6719. Disponível em: https://www.ripublication.com/ijaer17/ijaerv12n17_58.pdf

Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP and goal programming. Safety Science, 48, 238-247. DOI: https://doi.org/10.1016/j.ssci.2009.09.005

Banville, M., Landry, M., Martel, J. M., & Boulaire, C. (1998). A stakeholver approach to MCDA. System Research and Behavioral Science, 15(1), 502-519. DOI: https://doi.org/10.1002/(SICI)1099-1743(199801/02)15:1<15::AID-SRES179>3.0.CO;2-B

Berger, M. A. M., Van Nieuwenhuizen, M., Van Der Ent, M., & Van Der Zande, M. (2012). Development of a new wheelchair for wheelchair basketball players in the Netherlands. Procedia Engineering, 34, 331-336. DOI: https://doi.org/10.1016/j.proeng.2012.04.057

Çaliskan, H., Kursuncu, B., Kurbanoglu, C., & Güven, S. Y. (2013). Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials and Design, 45, 473-479. DOI: https://doi.org/10.1016/j.matdes.2012.09.042

Cowan, R. E., Nash, M. S., Collinger, J. L., Koontz, A. M., & Boninger, M. L. (2009). Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1076-1083. DOI: https://doi.org/10.1016/j.apmr.2008.10.034

Fitzgerald, S., Cooper, R. A., Boninger, M. L., & Rentschler, A. J. (2001). Comparison of fatigue live for 3 types of manual wheelchairs. Archives of Physical Medicine and Rehabilitation, 82, 1484-1488. DOI: https://doi.org/10.1053/apmr.2001.26139

Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., & Toda, H. (2005). Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Materials Science and Engineering C, 25, 304-311. DOI: https://doi.org/10.1016/j.msec.2004.12.015

Hybois, S., Puchaud, P., Bourgain, M., Lombart, A., Bascou, J., Lavaste, F., Fodé, P., Pillet, H., & Sauret, C. (2019). Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Medical Engineering and Physics, 69, 153-160. DOI: https://doi.org/10.1016/j.medengphy.2019.06.002

Koontz, A. M., Brindle, E. D., Kankipati, P., Feathers, D., & Cooper, R. A. (2010). Design features that affect the maneuverability of wheelchairs and scooters. Archives of Physical Medicine and Rehabilitation, 91, 759-764. DOI: https://doi.org/10.1016/j.apmr.2010.01.009

Kwarciak, A. M., Cooper, R. A., Ammer, W. A., Fitzgerald, S., Boninger, M. L., & Cooper, R. (2005). Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA satandards. Archives of Physical Medicine and Rehabilitation, 86, 123-129. DOI: https://doi.org/10.1016/j.apmr.2003.11.038

Mayyas, B., Shen, Q., Mayyas, A., Abdelhamid, M., Shan, D., Qattawi, A., & Omar, M. (2011). Using quality function deployment and analytical hierarchy process for material selection of body-in-white. Materials and Design, 32, 2771-2782. DOI: https://doi.org/10.1016/j.matdes.2011.01.001

Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, 1-12. DOI: https://doi.org/10.1016/j.asoc.2020.106136

Mohammadshahi, Y. (2013). A state-of-art survey on TQM applications using MCDM techniques. Decision Science Letters, 2, 125 - 134. DOI: https://doi.org/10.5267/j.dsl.2013.03.004

Nwaoha, T. C., & Ashiedu, F. I. (2015). Engineering Judgment in Wheelchair Design Criteria: An Analytical Hierarchy Process (AHP) Approach. Journal of Sustainable Technology, 6, 32 – 42. Disponível em: https://www.futa.edu.ng/journal/home/paperd/340/31/10

Quaglia, G., Franco, W., & Oderio, R. (2011). Wheelchair.q, a motorized wheelchair with stair climbing ability. Mechanism and Machine Theory, 46, 1601-1609. DOI: https://doi.org/10.1016/j.mechmachtheory.2011.07.005

Rahman, M., Tahiduzzaman, M., & Dey, S. K. (2018). QFD Based Product Design and Development of Weight Measuring Chair for the Benefits of Physically Challenged Person. American Journal of Industrial Engineering, 5, 12-16. DOI: https://doi.org/10.12691/ajie-5-1-2

Ravenek, K. E., Ravenek, M. J., Hitzig, S. L., & Wolfe, D. L. (2012). Assessing quality of life in relation to physical activity participation in persons with spinal cord injury: A systematic review. Disability and Health Journal, 5, 213-223. DOI: https://doi.org/10.1016/j.dhjo.2012.05.005

Roy, B., & Vanderpooten, D. (1996). The European School of MCDA: Emergence, Basic Features and Current Works. Journal of Multicriteria Decision Analysis, 5, 22-38. DOI: https://doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F

Ruíz-Serrano, A., Posada-Gómez, R., Sibaja, A. M., Rodríguez, G. A., Gonzalez-Sanchez, B. E., & Sandoval-Gonzalez, O. O. (2013). Development of a dual control system applied to a smart wheelchair, using magnetic and speech control. Procedia Technology, 7, 158-165. DOI: https://doi.org/10.1016/j.protcy.2013.04.020

Saaty, R. W. (1987). The analytic hierarchy process – what it is and how it is used. Mathematical Modeling, 9(3-5), 161-176. DOI: https://doi.org/10.1016/0270-0255(87)90473-8

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26. DOI: https://doi.org/10.1016/0377-2217(90)90057-I

Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7), 841-855. DOI: https://doi.org/10.1287/mnsc.32.7.841

Sprigle, S. (2009). On Impact of surface type, wheelchair weight, anda position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1073-1075. DOI: https://doi.org/10.1016/j.apmr.2009.04.002

Usma-Alvarez, C. C., Subic, A., Burton, M., & Fuss, F. K. (2010). Identification of design requiriments for rugby wheelchairs using the QFD method. Procedia Engineering, 2, 2749-2755. DOI: https://doi.org/10.1016/j.proeng.2010.04.061

Vaidya, O.S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169, 1-29. DOI: https://doi.org/10.1016/j.ejor.2004.04.028

Ward, A. L., Sanjak, M., Duffy, K., Bravver, E., Williams, N., Nichols, M., & Brooks, B. R. (2010). Power pheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines. Archives of Physical Medicine and Rehabilitation, 91, 268-272. DOI: https://doi.org/10.1016/j.apmr.2009.10.023

Yuan, Y., & Guan, T. (2014). Design of Individualized Wheelchairs Using AHP and Kano Model. Advances in Mechanical Engineering, 14, 1-6. DOI: https://doi.org/10.1155/2014/242034

Zafarini, H. R., Hassani, A., & Bagherpour, E. (2014). Achieving a desirable combination of strength and workability in Al/SiC composites by AHP selection method. Journal of Alloys and Compounds, 589, 295-300. DOI: https://doi.org/10.1016/j.jallcom.2013.11.181




DOI: https://doi.org/10.5585/exactaep.2021.17071

Direitos autorais 2021 Exacta

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

Tempo médio entre a submissão e primeira resposta de avaliação: 120 dias

Exacta – Engenharia de Produção

e-ISSN: 1983-9308
ISSN: 1678-5428
www.revistaexacta.org.br

Exacta  ©2022 Todos os direitos reservados.

Este obra está licenciada com uma Licença 
Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional