Uma metodologia de apoio à tomada de decisão para a seleção de materiais no desenvolvimento de projetos de cadeiras de rodas
DOI:
https://doi.org/10.5585/exactaep.2021.17071Palavras-chave:
Tomada de decisão, AHP, Seleção de materiais, Cadeira de rodas.Resumo
Uma das principais etapas de um projeto de cadeira de rodas é a definição de sua estrutura, que deve ser resistente para possibilitar a sua utilização em vários ambientes, leve para evitar a fadiga e possíveis problemas de saúde nos membros superiores do usuário, e possuir um custo adequado. O objetivo deste artigo é propor um método para a seleção do material da estrutura da cadeira de rodas de modo a auxiliar na etapa de desenvolvimento e melhoria de projetos de cadeiras de rodas. Para isso, foi empregado o método multicritério de tomada de decisão Analytic Hierarchy Process (AHP), o qual considera critérios quantitativos e qualitativos predeterminados para classificar as alternativas analisadas. O método foi aplicado para a seleção do material da estrutura de uma cadeira de rodas considerando dez alternativas (aços, ligas de alumínio e titânio). Nessa análise, identificou-se que a liga de alumínio A7003-T5, é o melhor material para a estrutura de cadeiras de rodas.
Downloads
Referências
Ahmad, M. N., Maidin, N. A., Rahman, M. H. A., & Osman, M. H. (2017). Conceptual Design Selection of Manual Wheelchair for Elderly by Analytical Hierarchy Process (AHP) Method: A Case Study. International Journal of Applied Engineering Research, 12, 6710-6719. Disponível em: https://www.ripublication.com/ijaer17/ijaerv12n17_58.pdf
Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP and goal programming. Safety Science, 48, 238-247. DOI: https://doi.org/10.1016/j.ssci.2009.09.005
Banville, M., Landry, M., Martel, J. M., & Boulaire, C. (1998). A stakeholver approach to MCDA. System Research and Behavioral Science, 15(1), 502-519. DOI: https://doi.org/10.1002/(SICI)1099-1743(199801/02)15:1<15::AID-SRES179>3.0.CO;2-B
Berger, M. A. M., Van Nieuwenhuizen, M., Van Der Ent, M., & Van Der Zande, M. (2012). Development of a new wheelchair for wheelchair basketball players in the Netherlands. Procedia Engineering, 34, 331-336. DOI: https://doi.org/10.1016/j.proeng.2012.04.057
Çaliskan, H., Kursuncu, B., Kurbanoglu, C., & Güven, S. Y. (2013). Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials and Design, 45, 473-479. DOI: https://doi.org/10.1016/j.matdes.2012.09.042
Cowan, R. E., Nash, M. S., Collinger, J. L., Koontz, A. M., & Boninger, M. L. (2009). Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1076-1083. DOI: https://doi.org/10.1016/j.apmr.2008.10.034
Fitzgerald, S., Cooper, R. A., Boninger, M. L., & Rentschler, A. J. (2001). Comparison of fatigue live for 3 types of manual wheelchairs. Archives of Physical Medicine and Rehabilitation, 82, 1484-1488. DOI: https://doi.org/10.1053/apmr.2001.26139
Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., & Toda, H. (2005). Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Materials Science and Engineering C, 25, 304-311. DOI: https://doi.org/10.1016/j.msec.2004.12.015
Hybois, S., Puchaud, P., Bourgain, M., Lombart, A., Bascou, J., Lavaste, F., Fodé, P., Pillet, H., & Sauret, C. (2019). Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Medical Engineering and Physics, 69, 153-160. DOI: https://doi.org/10.1016/j.medengphy.2019.06.002
Koontz, A. M., Brindle, E. D., Kankipati, P., Feathers, D., & Cooper, R. A. (2010). Design features that affect the maneuverability of wheelchairs and scooters. Archives of Physical Medicine and Rehabilitation, 91, 759-764. DOI: https://doi.org/10.1016/j.apmr.2010.01.009
Kwarciak, A. M., Cooper, R. A., Ammer, W. A., Fitzgerald, S., Boninger, M. L., & Cooper, R. (2005). Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA satandards. Archives of Physical Medicine and Rehabilitation, 86, 123-129. DOI: https://doi.org/10.1016/j.apmr.2003.11.038
Mayyas, B., Shen, Q., Mayyas, A., Abdelhamid, M., Shan, D., Qattawi, A., & Omar, M. (2011). Using quality function deployment and analytical hierarchy process for material selection of body-in-white. Materials and Design, 32, 2771-2782. DOI: https://doi.org/10.1016/j.matdes.2011.01.001
Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, 1-12. DOI: https://doi.org/10.1016/j.asoc.2020.106136
Mohammadshahi, Y. (2013). A state-of-art survey on TQM applications using MCDM techniques. Decision Science Letters, 2, 125 - 134. DOI: https://doi.org/10.5267/j.dsl.2013.03.004
Nwaoha, T. C., & Ashiedu, F. I. (2015). Engineering Judgment in Wheelchair Design Criteria: An Analytical Hierarchy Process (AHP) Approach. Journal of Sustainable Technology, 6, 32 – 42. Disponível em: https://www.futa.edu.ng/journal/home/paperd/340/31/10
Quaglia, G., Franco, W., & Oderio, R. (2011). Wheelchair.q, a motorized wheelchair with stair climbing ability. Mechanism and Machine Theory, 46, 1601-1609. DOI: https://doi.org/10.1016/j.mechmachtheory.2011.07.005
Rahman, M., Tahiduzzaman, M., & Dey, S. K. (2018). QFD Based Product Design and Development of Weight Measuring Chair for the Benefits of Physically Challenged Person. American Journal of Industrial Engineering, 5, 12-16. DOI: https://doi.org/10.12691/ajie-5-1-2
Ravenek, K. E., Ravenek, M. J., Hitzig, S. L., & Wolfe, D. L. (2012). Assessing quality of life in relation to physical activity participation in persons with spinal cord injury: A systematic review. Disability and Health Journal, 5, 213-223. DOI: https://doi.org/10.1016/j.dhjo.2012.05.005
Roy, B., & Vanderpooten, D. (1996). The European School of MCDA: Emergence, Basic Features and Current Works. Journal of Multicriteria Decision Analysis, 5, 22-38. DOI: https://doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F
Ruíz-Serrano, A., Posada-Gómez, R., Sibaja, A. M., Rodríguez, G. A., Gonzalez-Sanchez, B. E., & Sandoval-Gonzalez, O. O. (2013). Development of a dual control system applied to a smart wheelchair, using magnetic and speech control. Procedia Technology, 7, 158-165. DOI: https://doi.org/10.1016/j.protcy.2013.04.020
Saaty, R. W. (1987). The analytic hierarchy process – what it is and how it is used. Mathematical Modeling, 9(3-5), 161-176. DOI: https://doi.org/10.1016/0270-0255(87)90473-8
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26. DOI: https://doi.org/10.1016/0377-2217(90)90057-I
Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7), 841-855. DOI: https://doi.org/10.1287/mnsc.32.7.841
Sprigle, S. (2009). On Impact of surface type, wheelchair weight, anda position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1073-1075. DOI: https://doi.org/10.1016/j.apmr.2009.04.002
Usma-Alvarez, C. C., Subic, A., Burton, M., & Fuss, F. K. (2010). Identification of design requiriments for rugby wheelchairs using the QFD method. Procedia Engineering, 2, 2749-2755. DOI: https://doi.org/10.1016/j.proeng.2010.04.061
Vaidya, O.S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169, 1-29. DOI: https://doi.org/10.1016/j.ejor.2004.04.028
Ward, A. L., Sanjak, M., Duffy, K., Bravver, E., Williams, N., Nichols, M., & Brooks, B. R. (2010). Power pheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines. Archives of Physical Medicine and Rehabilitation, 91, 268-272. DOI: https://doi.org/10.1016/j.apmr.2009.10.023
Yuan, Y., & Guan, T. (2014). Design of Individualized Wheelchairs Using AHP and Kano Model. Advances in Mechanical Engineering, 14, 1-6. DOI: https://doi.org/10.1155/2014/242034
Zafarini, H. R., Hassani, A., & Bagherpour, E. (2014). Achieving a desirable combination of strength and workability in Al/SiC composites by AHP selection method. Journal of Alloys and Compounds, 589, 295-300. DOI: https://doi.org/10.1016/j.jallcom.2013.11.181
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Exacta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.