A decision support methodology for material selection in the development of wheelchair projects
DOI:
https://doi.org/10.5585/exactaep.2021.17071Keywords:
Decision-making, AHP, Material selection, Wheelchair.Abstract
One of the main stages of a wheelchair project is the definition of the structure that must be resistant to allow its use in various environments, light to avoid fatigue and possible health problems in the user's upper limbs and have an adequate cost. The objective of this article is to propose a methodology for the material selection of wheelchair structure to assist in the development and improvement of wheelchair projects. For that, the Analytic Hierarchy Process (AHP) multicriteria decision-making method was used, which considers predetermined quantitative and qualitative criteria to classify the analyzed alternatives. The method was applied to material selection of a wheelchair structure considering ten alternatives (steels, aluminum alloys and titanium). In this analysis it was identified that the aluminum alloy A7003-T5, is the best material for the wheelchair structure.Downloads
References
Ahmad, M. N., Maidin, N. A., Rahman, M. H. A., & Osman, M. H. (2017). Conceptual Design Selection of Manual Wheelchair for Elderly by Analytical Hierarchy Process (AHP) Method: A Case Study. International Journal of Applied Engineering Research, 12, 6710-6719. Disponível em: https://www.ripublication.com/ijaer17/ijaerv12n17_58.pdf
Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP and goal programming. Safety Science, 48, 238-247. DOI: https://doi.org/10.1016/j.ssci.2009.09.005
Banville, M., Landry, M., Martel, J. M., & Boulaire, C. (1998). A stakeholver approach to MCDA. System Research and Behavioral Science, 15(1), 502-519. DOI: https://doi.org/10.1002/(SICI)1099-1743(199801/02)15:1<15::AID-SRES179>3.0.CO;2-B
Berger, M. A. M., Van Nieuwenhuizen, M., Van Der Ent, M., & Van Der Zande, M. (2012). Development of a new wheelchair for wheelchair basketball players in the Netherlands. Procedia Engineering, 34, 331-336. DOI: https://doi.org/10.1016/j.proeng.2012.04.057
Çaliskan, H., Kursuncu, B., Kurbanoglu, C., & Güven, S. Y. (2013). Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials and Design, 45, 473-479. DOI: https://doi.org/10.1016/j.matdes.2012.09.042
Cowan, R. E., Nash, M. S., Collinger, J. L., Koontz, A. M., & Boninger, M. L. (2009). Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1076-1083. DOI: https://doi.org/10.1016/j.apmr.2008.10.034
Fitzgerald, S., Cooper, R. A., Boninger, M. L., & Rentschler, A. J. (2001). Comparison of fatigue live for 3 types of manual wheelchairs. Archives of Physical Medicine and Rehabilitation, 82, 1484-1488. DOI: https://doi.org/10.1053/apmr.2001.26139
Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., & Toda, H. (2005). Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Materials Science and Engineering C, 25, 304-311. DOI: https://doi.org/10.1016/j.msec.2004.12.015
Hybois, S., Puchaud, P., Bourgain, M., Lombart, A., Bascou, J., Lavaste, F., Fodé, P., Pillet, H., & Sauret, C. (2019). Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Medical Engineering and Physics, 69, 153-160. DOI: https://doi.org/10.1016/j.medengphy.2019.06.002
Koontz, A. M., Brindle, E. D., Kankipati, P., Feathers, D., & Cooper, R. A. (2010). Design features that affect the maneuverability of wheelchairs and scooters. Archives of Physical Medicine and Rehabilitation, 91, 759-764. DOI: https://doi.org/10.1016/j.apmr.2010.01.009
Kwarciak, A. M., Cooper, R. A., Ammer, W. A., Fitzgerald, S., Boninger, M. L., & Cooper, R. (2005). Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA satandards. Archives of Physical Medicine and Rehabilitation, 86, 123-129. DOI: https://doi.org/10.1016/j.apmr.2003.11.038
Mayyas, B., Shen, Q., Mayyas, A., Abdelhamid, M., Shan, D., Qattawi, A., & Omar, M. (2011). Using quality function deployment and analytical hierarchy process for material selection of body-in-white. Materials and Design, 32, 2771-2782. DOI: https://doi.org/10.1016/j.matdes.2011.01.001
Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, 1-12. DOI: https://doi.org/10.1016/j.asoc.2020.106136
Mohammadshahi, Y. (2013). A state-of-art survey on TQM applications using MCDM techniques. Decision Science Letters, 2, 125 - 134. DOI: https://doi.org/10.5267/j.dsl.2013.03.004
Nwaoha, T. C., & Ashiedu, F. I. (2015). Engineering Judgment in Wheelchair Design Criteria: An Analytical Hierarchy Process (AHP) Approach. Journal of Sustainable Technology, 6, 32 – 42. Disponível em: https://www.futa.edu.ng/journal/home/paperd/340/31/10
Quaglia, G., Franco, W., & Oderio, R. (2011). Wheelchair.q, a motorized wheelchair with stair climbing ability. Mechanism and Machine Theory, 46, 1601-1609. DOI: https://doi.org/10.1016/j.mechmachtheory.2011.07.005
Rahman, M., Tahiduzzaman, M., & Dey, S. K. (2018). QFD Based Product Design and Development of Weight Measuring Chair for the Benefits of Physically Challenged Person. American Journal of Industrial Engineering, 5, 12-16. DOI: https://doi.org/10.12691/ajie-5-1-2
Ravenek, K. E., Ravenek, M. J., Hitzig, S. L., & Wolfe, D. L. (2012). Assessing quality of life in relation to physical activity participation in persons with spinal cord injury: A systematic review. Disability and Health Journal, 5, 213-223. DOI: https://doi.org/10.1016/j.dhjo.2012.05.005
Roy, B., & Vanderpooten, D. (1996). The European School of MCDA: Emergence, Basic Features and Current Works. Journal of Multicriteria Decision Analysis, 5, 22-38. DOI: https://doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F
Ruíz-Serrano, A., Posada-Gómez, R., Sibaja, A. M., Rodríguez, G. A., Gonzalez-Sanchez, B. E., & Sandoval-Gonzalez, O. O. (2013). Development of a dual control system applied to a smart wheelchair, using magnetic and speech control. Procedia Technology, 7, 158-165. DOI: https://doi.org/10.1016/j.protcy.2013.04.020
Saaty, R. W. (1987). The analytic hierarchy process – what it is and how it is used. Mathematical Modeling, 9(3-5), 161-176. DOI: https://doi.org/10.1016/0270-0255(87)90473-8
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26. DOI: https://doi.org/10.1016/0377-2217(90)90057-I
Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7), 841-855. DOI: https://doi.org/10.1287/mnsc.32.7.841
Sprigle, S. (2009). On Impact of surface type, wheelchair weight, anda position on wheelchair propulsion by novice older adults. Archives of Physical Medicine and Rehabilitation, 90, 1073-1075. DOI: https://doi.org/10.1016/j.apmr.2009.04.002
Usma-Alvarez, C. C., Subic, A., Burton, M., & Fuss, F. K. (2010). Identification of design requiriments for rugby wheelchairs using the QFD method. Procedia Engineering, 2, 2749-2755. DOI: https://doi.org/10.1016/j.proeng.2010.04.061
Vaidya, O.S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169, 1-29. DOI: https://doi.org/10.1016/j.ejor.2004.04.028
Ward, A. L., Sanjak, M., Duffy, K., Bravver, E., Williams, N., Nichols, M., & Brooks, B. R. (2010). Power pheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines. Archives of Physical Medicine and Rehabilitation, 91, 268-272. DOI: https://doi.org/10.1016/j.apmr.2009.10.023
Yuan, Y., & Guan, T. (2014). Design of Individualized Wheelchairs Using AHP and Kano Model. Advances in Mechanical Engineering, 14, 1-6. DOI: https://doi.org/10.1155/2014/242034
Zafarini, H. R., Hassani, A., & Bagherpour, E. (2014). Achieving a desirable combination of strength and workability in Al/SiC composites by AHP selection method. Journal of Alloys and Compounds, 589, 295-300. DOI: https://doi.org/10.1016/j.jallcom.2013.11.181
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Exacta
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.