Avaliação da capacidade preditiva de modelos ARIMA e VAR-VEC: o caso da demanda por energia elétrica no Rio Grande do Sul
DOI:
https://doi.org/10.5585/exactaep.2021.17357Palavras-chave:
Séries temporais, Modelo Box-Jenkins, Modelo de vetores autorregressivos, Modelo de correção de erros vetoriais.Resumo
O presente estudo apresenta a modelagem da demanda de energia elétrica no estado do Rio Grande do Sul para os três principais setores consumidores: residencial, comercial e industrial, utilizando o modelo vetorial autorregressivo, complementado pelo modelo vetorial de correção dos erros. Nesta modelagem, também foram utilizadas informações a respeito da tarifa de energia elétrica, PIB, preços de eletrodomésticos e preço de materiais e equipamentos elétricos. A capacidade preditiva dos modelos ajustados foi comparada com a do modelo obtido pela modelagem de Box-Jenkins, em especial, o modelo autorregressivo integrado de médias móveis (ARIMA). Para o ajuste dos modelos, foram utilizados dados do período 1971-2010, tendo sua validação realizada no período 2011-17. De maneira geral, para os três setores consumidores, a melhor capacidade preditiva foi obtida a partir dos modelos ARIMA. Entretanto, os outros modelos o suplantaram para a previsão um passo à frente.
Downloads
Referências
Agência Nacional de Energia Elétrica (2008). Atlas de Energia Elétrica do Brasil. Brasília, DF: ANEEL. Recuperado em janeiro, 2018, de http://www2.aneel.gov.br/arquivos/PDF/atlas3ed.pdf
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 60(2), 255-265. Retrieved January, 2016, from: http://www.jstor.org/stable/2334537?seq=1#page_scan_tab_contents
Amaro, R. S., Ceretta, P. S., Coronel, D. A., Bender, R., Filho, Oliveira, M. G. (2017). Comparação da capacidade preditiva de modelos ARIMA para o consumo de energia elétrica no Brasil, Revista Unemat de Contabilidade, 6(11), 173-192. DOI: https://doi.org/10.30681/ruc.v6i11.1848
Andrade, T. A., Lobão, W. J. A. (1997). Elasticidade renda e preço da demanda residencial de energia elétrica no Brasil [Texto para discussão nº 489]. Brasília, DF: IPEA. Recuperado em janeiro, 2016, de: http://repositorio.ipea.gov.br/bitstream/11058/2162/1/td_0489.pdf
Box, G. E. P., Jenkins, G. M. (1976). Time series analysis: forecasting and control. 1st ed. New Jersey: Prentice Hall.
Box, G. E.; Jenkins, G. M.; Reinsel, G. C. (1994). Time series analysis: Forecasting and control. 3a ed. New Jersey: Printice Hall.
Bueno, R. D. L. S. (2011). Econometria de séries temporais, 2a ed. São Paulo: Editora Cengage Learning.
Cabral, J. A., Legey, L. F. L., Cabral, M. V. F. (2017). Electricity consumption forecasting in Brazil: A spatial econometrics approach. Energy. V. 126, P. 124-131. DOI: https://doi.org/10.1016/j.energy.2017.03.005
Castro N. R., Gilio, l., Silva, A. F., Ozaki, V. G. (2016). Modelos univariados e multivariados aplicados à previsão de valores de exportação: uma análise comparativa para o complexo soja, Revista Espacios. 37(3). Recuperado em 10 abril, 2020, de: https://www.revistaespacios.com/a16v37n03/16370315.html
Cottrell, A., Lucchetti, R. J. (2018). GRETL: GNU Regression, Econometrics and Timeseries Library. Version 2018d. Recuperado em abril, 2018, de: http://gretl.sourceforge.net/
Dickey, D. A., Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root [versão eletrônica]. Econometrica: Journal of the Econometric Society, 49(4), 1057-1072. Recuperado em Janeiro, 2018, de: http://www.jstor.org/stable/1912517?seq=1#page_scan_tab_contents
ELETROBRAS. (2018). Boletim SIESE: consumo de energia elétrica no Brasil. Recuperado em janeiro, 2018, de: http://www.ipeadata.gov.br
Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1.007. Recuperado em março, 2018, de: https://pdfs.semanticscholar.org/2ee6/cb87fc81ecd78d161c4a92c9dfce00c8961c.pdf?_ga=2.146146356.1600934247.1590176948-885226569.1590176948
Ferreira, R. V.; Braga, A. P.; Mendes, E. M. A. M. (2006). Previsão de demanda: um estudo de caso para o sistema interligado nacional. Dissertação de Mestrado, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. Recuperado em agosto, 2019, de: https://www.ppgee.ufmg.br/defesas/417M.PDF
Ferreira, J. S. P.; Silva, N. R. (2015). Determinação dos parâmetros α e b da função de Cobb-Douglas, através do método dos mínimos quadrados. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3(1), 1-2. DOI: https://doi.org/10.5540/03.2015.003.01.0145
González-Romera, E., Jaramillo-Morán, M. A., Carmona-Fernández D. (2008). Monthly electric energy demand forecasting with neural networks and Fourier series, Energy Conversion and Management, 49, 3135-3142. DOI: https://doi.org/10.1016/j.enconman.2008.06.004
Gujarati, D. N., Porter, D. C. (2011). Econometria Básica. 5a ed. São Paulo, SP: AMGH Editora.
Hannan, E. J., Quinn, B. G. (1979). The determination of the order of an autoregression, Journal of the Royal Statistical Society - Series B, 41, 190–195.
Irffi, G., Castelar, I., Siqueira, M. L., Linhares, F. C. (2009). Previsão da demanda por energia elétrica para classes de consumo na região Nordeste, usando OLS dinâmico e mudança de regime [versão eletrônica], Economia Aplicada, 13(1), 69-98. Recuperado em janeiro, 2018, de: http://www.scielo.br/pdf/ecoa/v13n1/v13n1a04.pdf
Jarque, C., Bera, A., (1987). A test for normality of observations and regression residuals. International Statistical Review 55, 163–172. DOI: https://doi.org/10.2307/1403192
Johansen, S. (1988). Statistical analysis of cointegration vectors [versão eletrônica], Journal of economic dynamics and control, 12(2-3), 231–254. Recuperado em janeiro, 2018, de: http://www.sciencedirect.com/science/article/pii/0165188988900413
Kwiatkowski, D., Philips, P. C. B., Schimdt, P., Schin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root [versão eletrônica], Journal of econometrics, 54(1-3), 159-178. Recuperado em janeiro, 2018, de: http://www.sciencedirect.com/science/article/pii/030440769290104Y
Leite, S. Q. (2006). Projeções para a demanda por energia elétrica no Brasil, 2006-2015. Dissertação de Mestrado Profissionalizante, Faculdades Ibemec, Rio de Janeiro, RJ, Brasil. Recuperado em junho, 2018, de: http://s3.amazonaws.com/public-cdn.ibmec.br/portalibmec-content/public/arquivos/df/dis_2006_12_-_sidimar_quezada_leite.pdf
Lima, H. C. G. (2011). A demanda setorial de energia elétrica em Pernambuco. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife, PE, Brasil. Recuperado em janeiro, 2019, de: http://repositorio.ufpe.br/handle/123456789/1240
Ljung, G.M., Box, G.E.P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297-303.
Mattos, L. B. (2004). Demanda de energia elétrica no estado de Minas Gerais: 1970-2002. Dissertação de Mestrado, Universidade Federal de Viçosa, MG, Brasil. Recuperado em novembro, 2018, de: https://q.eletrobras.com/pt/EstudantesePesquisadores/biblioteca/Demanda%20de%20Energia%20El%C3%A9trica%20no%20Estado%20de%20Minas%20Gerais_%201970-2002.PDF
Mattos, L. B., Lima, J. E. de. (2005). Demanda residencial de energia elétrica em Minas Gerais: 1970-2002 [versão eletrônica]. Nova Economia, 15(3), 31–52. DOI: https://doi.org/10.1590/S0103-63512005000300002
Modiano, E. M. (1984). Elasticidade-renda e preços da demanda de energia elétrica no Brasil [Texto para discussão, 68]. Rio de Janeiro, RJ: PUC. Recuperado em janeiro, 2019, de: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td68.pdf
Morettin, P. A. (2006). Econometria Financeira: Um curso em Séries Temporais Financeiras. São Paulo: Editora Edgard Blucher.
R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Áustria: R Core Team. Recuperado em abril, 2019, de: https://www.R-project.org
Schmidt, C. A. J., Lima, M. A. (2004). A demanda por energia elétrica no Brasil, Revista Brasileira de Economia, 58(1), 67–98. DOI: https://doi.org/10.1590/S0034-71402004000100004
Schwarz, G. (1978). Estimating the dimension of a model [versão eletrônica], Annals of Statistics, 6(2), 461–464. Recuperado em dezembro, 2017, de http://qwone.com/~jason/trg/papers/schwarz-dimension-78.pdf
Silveira, A. G. (2017). Estudo da demanda energia elétrica no Brasil. Dissertação de Mestrado, Universidade Federal de Rio Grande (FURG), Rio Grande, RS, Brasil. Recuperado em março, 2018, de: https://ppgmc.furg.br/puclica
Viana, G. I. M. N. (2010). Um modelo para projeções para demanda por energia elétrica, 2009-2017 e a evolução do custo social e tarifa ótima para o Brasil. Dissertação de Mestrado, Universidade Federal de Alagoas, Maceió, AL, Brasil. Recuperado em dezembro, 2018, de: http://www.repositorio.ufal.br/jspui/bitstream/riufal/1377/1/Um%20modelo%20para%20proje%c3%a7%c3%b5es%20para%20demanda%20por%20energia%20el%c3%a9trica%2c%202009-2017%20e%20a%20evolu%c3%a7%c3%a3o%20do%20custo%20social%20e%20tarifa%20%c3%b3tima%20para%20o%20Brasil.pdf
Viana, G. I. M. N., Silva, A. L. M. (2014). Um modelo para projeções para demanda por energia elétrica, 2009-2017 para o setor residencial no Brasil [versão eletrônica], Revista Brasileira de Energia, 20(1), 107–126. Recuperado em fevereiro, 2018, de: http://new.sbpe.org.br/artigo/327/
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Exacta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.