Desenvolvimento de um algoritmo para a expansão de capacidade do problema de projeto de redes sob efeito de congestionamento
DOI:
https://doi.org/10.5585/exactaep.2021.19783Palavras-chave:
Pesquisa Operacional. Projeto de Redes. Expansão de Capacidade. Congestionamento. Instalação de Links.Resumo
Uma área da Pesquisa Operacional bastante estudada é o problema de projeto de redes. Alguns problemas impactam diretamente nas redes, diminuindo sua qualidade de serviço, como o congestionamento, sendo o principal problema abordado neste trabalho. Dessa forma, objetiva-se desenvolver um algoritmo capaz de tratar o problema de projetos de rede sob efeito de congestionamento. A formulação matemática do problema foi elaborada, abrangendo a expansão de capacidade, onde a quantidade de commodities enviada nos links é expandida bem como a instalação de novos links; em seguida, foi desenvolvido o algoritmo. Na realização de testes foram utilizadas as instâncias de Nugent, os resultados obtidos foram apresentados, e, para melhor compreensão dos mesmos, foi representada graficamente a instância de 15 nós. Finalmente, conclui-se que o algoritmo foi capaz de modificar a rede de acordo com a expansão de capacidade nos links, e, tratar o congestionamento, melhorando a qualidade de serviço das redes.
Downloads
Referências
Atamturk, A., & Gunluk, O. (2017). On Capacity Models for Network Design. arXiv preprint arXiv:1711.10147. doi:https://doi.org/10.1287/trsc.18.1.1
Baskan, O. (2014). Harmony search algorithm for continuous network design problem with link capacity expansions. KSCE Journal of Civil Engineering, 18(1), 273-283. doi:https://doi.org/10.1007/s12205-013-0122-6
Belieres, S., Hewitt, M., & Jozefowiez, N. &. (2021). Meta partial benders decomposition for the logistics service network design problem. European Journal of Operational Research. doi:https://doi.org/10.1016/j.ejor.2021.07.056
Bharath-Kumar, K., & Jaffe, J. (1983). Routing to multiple destinations in computer networks. IEEE Transactions on communications, 31(3), pp. 343-351. doi:10.1109/TCOM.1983.1095818
Conceição, L., & Correia, G. H. (2020). The reversible lane network design problem (RL-NDP) for smart cities with automated traffic. Sustainability, 12(3), 1226. doi:https://doi.org/10.3390/su12031226
Contreras, I. F. (2009). Tight bounds from a path based formulation for the tree of hub location problem. Computers & Operations Research, 36(12), 3117-3127.
Contreras, I. F. (2009). Tight bounds from a path based formulation for the tree of hub location problem. Computers & Operations Research, 36(12), 3117-3127.
Contreras, I., Fernández, E., & Marín, A. (2009). Tight bounds from a path based formulation for the tree of hub location problem. Computers & Operations Research, 36(12), 3117-3127. doi:https://doi.org/10.1016/j.cor.2008.12.009
Contreras, I., Fernández, E., & Marín, A. (2010). The tree of hubs location problem. European Journal of Operational Research, 202(2), 390-400. doi:https://doi.org/10.1016/j.ejor.2009.05.044
Cordeau, J. F., Pasin, F., & Solomon, M. M. (2006). An integrated model for logistics network design. Annals of operations research, 144, pp. 59-82. doi:https://doi.org/10.1007/s10479-006-0001-3
Dantzig, G. B. (1962). Linear Programming and Extensions. Princeton University Press. doi:https://doi.org/10.1515/9781400884179
Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Hybrid optimizers to solve a tri-level programming model for a tire closed-loop supply chain network design problem. Applied Soft Computing, 70, 701-722. doi:https://doi.org/10.1016/j.asoc.2018.06.021
Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Tian, G. &. (2020). An adaptive Lagrangian relaxation-based algorithm for a coordinated water supply and wastewater collection network design problem. Information Sciences, 512, 1335-1359. doi:https://doi.org/10.1016/j.ins.2019.10.062
Fontaine, P., Crainic, T. G., Gendreau, M., & & Minner, S. (2020). Population-based risk equilibration for the multimode hazmat transport network design problem. European Journal of Operational Research, 284(1), 188-200. doi:https://doi.org/10.1016/j.ejor.2019.12.028
Garuba, F., Goerigk, M., & Jacko, P. (2009). Robust network capacity expansion with non-linear costs. doi:10.4230/OASIcs.ATMOS.2019.
Hatefi, S. M., Moshashaee, S. M., & Mahdavi, I. (2019). A bi-objective programming model for reliable supply chain network design under facility disruption. International Journal of Integrated Engineering, 11(6), 80-92. doi:https://doi.org/10.30880/ijie.2019.11.06.009
Hellsten, E. O., & Sacramento, D. &. (2021). A Branch-And-Price Algorithm for Solving The Single-Hub Feeder Network Design Problem. European Journal of Operational Research. doi:https://doi.org/10.1016/j.ejor.2021.08.046
Janatyan, N., Zandieh, M., & Alem-Tabriz, A. &. (2021). A robust optimization model for sustainable pharmaceutical distribution network design: a case study. Annals of Operations Research, 1-20. doi:https://doi.org/10.1007/s10479-020-03900-5
Koza, D. F., & Desaulniers, G. &. (2020). Integrated liner shipping network design and scheduling. Transportation Science, 54(2), pp. 512-533. doi:https://doi.org/10.1287/trsc.2018.0888
Leblanc, L. J. (1975). An algorithm for the discrete network design problem. Transportation Science, 9(3), 183-199. doi:https://doi.org/10.1287/trsc.9.3.183
Liang, Y., Lu, M., & Shen, Z. J. (2021). Data Center Network Design for Internet‐Related Services and Cloud Computing. Production and Operations Management. doi:https://doi.org/10.1016/j.ejor.2021.08.046
Nagurney, A. (2002). network Economics: an introduction. Isenberg School of Management, University of Massachusetts.
Nagurney, A., & Qiang, Q. (2007). A network efficiency measure for congested networks. EPL (Europhysics Letters), 79(3), 38005.
Nikoo, N., Babaei, M., & Mohaymany, A. S. (2018). Emergency transportation network design problem: Identification and evaluation of disaster response routes. International journal of disaster risk reduction, 27, 7-20. doi:https://doi.org/10.1016/j.ijdrr.2017.07.003
Nugent, C. E., Vollmann, T. E., & Ruml, J. (1968). An experimental comparison of techniques for the assignment of facilities to locations. Operations research, 16(1), 150-173. doi:https://doi.org/10.1287/opre.16.1.150
Ordóñez, F., & Zhao, J. (2007). Robust capacity expansion of network flows. Networks: An International Journal, 50(2), 136-145. doi:doi.org/10.1002/net.20183
Ouorou, A., Luna, H. P., & Mahey, P. (2001). Multicommodity network expansion under elastic demands. Optimization and Engineering, 2(3), 277-292. doi:https://doi.org/10.1023/A:1015314432240
Ramírez-Rosado, I. J., & Domínguez-Navarro, J. A. (2006). New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems. (Vol. 21(1)). IEEE Transactions on Power systems. doi:10.1109/TPWRS.2005.860946
ramírez-Rosado, I. J.-N. (2006). New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems. (Vol. 21(1)). IEEE Transactions on Power systems.
Randazzo, C. D., & Luna, H. P. (2001). A comparison of optimal methods for local access uncapacitated network design. Annals of Operations Research, 106(1), 263-286. doi:https://doi.org/10.1023/A:1014569927266
Santos, K. D., de Miranda Júnior, G., & de Camargo, R. S. (2016). APROXIMAÇÃO EXTERNA/DECOMPOSIÇÃO DE BENDERS PARA PROJETO DE REDES SOB CONGESTIONAMENTO VIA λ-ÓTIMO. doi:10.5151/marine-spolm2015-140578
Schumacher, K. M., Li‐Yang Chen, R., Cohn, A. E., & Castaing, J. (2016). Algorithm to solve a chance‐constrained network capacity design problem with stochastic demands and finite support. Naval Research Logistics (NRL), 63(3), 236-246. doi:https://doi.org/10.1002/nav.21685
Yang, H., & Bell, M. G. (1998). A capacity paradox in network design and how to avoid it. Transportation Research Part A: Policy and Practice, 32(7), 539-545. doi:https://doi.org/10.1016/S0965-8564(98)00017-2
Yildiz, H., Yoon, J., Talluri, S., & Ho, W. (2016). Reliable supply chain network design. Decision Sciences, 47(4), 661-698. doi:https://doi.org/10.1111/deci.12160
Yu, H., Sun, X., Solvang, W. D., & Laporte, G. &. (2020). A stochastic network design problem for hazardous waste management. Journal of cleaner production, 277,123566. doi:https://doi.org/10.1016/j.jclepro.2020.123566
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Autores
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.