Modelagem de Equações Estruturais para avaliação de fatores de risco no gerenciamento da cadeia de suprimentos

Wellington Gonçalves, Thiago Carvalho Rodrigues Silva, Rodrigo Randow Freitas

Resumo


A constante elevação nas exigências do mercado tem implicado em aumento de complexidade das Cadeias de Suprimentos (CS) e seus riscos. Esses riscos, quando não mitigados, podem gerar impactos negativos irreversíveis em toda uma CS. Nesse contexto, este estudo utiliza uma abordagem estatística multivariada através da Structural Equation Modeling (SEM) para avaliar os efeitos de alguns fatores de risco no desempenho de CS. O modelo foi aplicado em uma cadeia de suprimentos de cerveja do estado do Espírito Santo (ES), considerando os seguintes fatores: custo, variação de volume, capacidade de resposta, conhecimento, segurança e qualidade. Os resultados sugerem possibilidades e percepções descobertas numa CS do setor de bebidas, visualizadas com a utilização da SEM, em que as dimensões custo, variação de volume, capacidade de resposta, conhecimento e qualidade são apontadas como elementos preponderantes. Este estudo possui relevantes informações que possiblitam embasamento para tomadas de decisão referentes ao tema.


Palavras-chave


Fatores de risco; Cadeia de suprimentos; Modelagem de Equações Estruturais

Texto completo:

pdf

Referências


Anand, N., & Grover, N. (2015). Measuring retail supply chain performance: Theoretical model using key performance indicators (KPIs). Benchmarking: An International Journal, 22(1), 135-166.

Avelar-Sosa, L., García-Alcaraz, J. L., & Castrellón-Torres, J. P. (2014). The effects of some risk factors in the supply chains performance: a case of study. Journal of applied research and technology, 12(5), 958-968.

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the academy of marketing science, 40(1), 8-34.

Bandaly, D., Satir, A., & Shanker, L. (2016). Impact of lead time variability in supply chain risk management. International Journal of Production Economics, 180, 88-100.

Begen, M. A., Pun, H., & Yan, X. (2016). Supply and demand uncertainty reduction efforts and cost comparison. International Journal of Production Economics, 180, 125-134.

Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics, 152, 131-143.

Cannella, S., Bruccoleri, M., & Framinan, J. M. (2016). Closed-loop supply chains: What reverse logistics factors influence performance? International Journal of Production Economics, 175, 35-49.

Cedillo-Campos, M., & Sánchez-Ramírez, C. (2013). Dynamic self-assessment of supply chains performance: an emerging market approach. Journal of Applied Research and Technology, 11(3), 338-347.

Chakraborty, R., Ray, A., & Dan, P. (2013). Multi criteria decision making methods for location selection of distribution centers. International Journal of Industrial Engineering Computations, 4(4), 491-504.

Chandio, F. H. (2011). Studying acceptance of online banking information system: a structural equation model. Tese de Doutorado, Universidade de Brunel, Londres, LND, Inglaterra.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.

Dresch, A., & Miguel, P. A. C. (2015). Análise dos principais métodos de pesquisa empregados para a condução de estudos que abordam a inovação no Brasil. GEINTEC - Gestão, Inovação e Tecnologias, 5(4), 2480-2494.

Fayezi, S., Zutshi, A., & O'Loughlin, A. (2015). How Australian manufacturing firms perceive and understand the concepts of agility and flexibility in the supply chain. International Journal of Operations & Production Management, 35(2), 246-281.

Fujita, M., & Hamaguchi, N. (2016). Supply chain internationalization in East Asia: Inclusiveness and risks. Papers in Regional Science, 95(1), 81-100.

Gonçalves, W. (2016). Integração de Técnicas de Análise Multivariada e Método Multicritério para Localização de Centros de Distribuição. Tese de Doutorado, Universidade Metodista de Piracicaba, Santa Bárbara d’Oeste, SP, Brasil.

Grabara, J., Kolcun, M., & Kot, S. (2014). The role of information systems in transport logistics. International Journal of Education and Research, 2(2), 1-8.

Gu, W., & Wei, L. An (2015). Integrated Location Approach for FMCG Distribution Centers in China. Journal of Information & Computational Science, 12(15), 5753-5767.

Güzel, D., & Erdal, H. (2015). A Comparative Assesment of Facility Location Problem via fuzzy TOPSIS and fuzzy VIKOR: A Case Study on Security Services. International Journal of Business and Social Research, 5(5), 49-61.

Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk–Definition, measure and modeling. Omega, 52, 119-132.

Heydari, J. (2014). Coordinating supplier׳ s reorder point: A coordination mechanism for supply chains with long supplier lead time. Computers & Operations Research, 48, 89-101.

Heydari, J., Mahmoodi, M., & Taleizadeh, A. A. (2016). Lead time aggregation: A three-echelon supply chain model. Transportation Research Part E: Logistics and Transportation Review, 89, 215-233.

Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of marketing research, 19(4), 404-416.

Kalson, A. (2014). The effects of leader-member exchange and employee wellbeing towards employee turnover intention. Tese de Doutorado. Escola de negócios Deakin, Universidade Deakin, Victoria, Austrália.

Kumar, V., Verma, P., Sharma, K., & Khan, F. (2017). Conquering in emerging markets: critical success factors to enhance supply chain performance. Benchmarking: An International Journal, 24(3), 570-593.

Kwak, D. W., Rodrigues, V. S., Mason, R., Pettit, S., & Beresford, A. (2018). Risk interaction identification in international supply chain logistics: Developing a holistic model. International Journal of Operations & Production Management, 38(2), 372-389.

Lee, H. L., & Whang, S. (2005). Higher supply chain security with lower cost: Lessons from total quality management. International Journal of production economics, 96(3), 289-300.

Lee, M. S., Rha, J., Choi, D., & Noh, Y. (2013). Pressures affecting green supply chain performance. Management Decision, 51(8), 1753-1768.

Leończuk, D. (2016). Categories of Supply Chain Performance Indicators: an Overview of Approaches. Business, Management and Education, 14(1), 103-115.

Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business logistics, 22(2), 1-25.

Miguel, P. A. C. (Org.), Fleury, A., Mello, C. H. P., Nakano, D. N., Lima, E. P., Turrioni, J. B., Ho, L. L., Morabito Neto, R., Martins, R. A., Sousa, R., Costa, S. E. G., Pureza, V. M. M. (2012). Metodologia de pesquisa em engenharia de produção e gestão de operações. 2ª ed. Rio de Janeiro: Elsevier.

Ministério da Agricultura, Pecuária e Abastecimento. Pesquisa de Dados de produção de cerveja. 2016. Disponível em: . Acesso em: 13 dez. 2017.

Mishra, D., Sharma, R. R. K., Kumar, S., & Dubey, R. (2016). Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance. International Journal of Production Economics, 180, 183-197.

Mital, M., Del Guidice, M., & Papa, A. (2017). Comparing supply chain risks for multiple product categories with cognitive mapping and Analytic Hierarchy Process. Technological Forecasting and Social Change, 119, 128-139.

Nakandala, D., Lau, H., & Zhang, J. (2016). Cost-optimization modelling for fresh food quality and transportation. Industrial Management & Data Systems, 116(3), 564-583.

Nooraie, S. V., & Parast, M. M. (2016). Mitigating supply chain disruptions through the assessment of trade-offs among risks, costs and investments in capabilities. International Journal of Production Economics, 171, 8-21.

Omar, W. W. (2013). Transformational leadership style and job satisfaction relationship: A study of structural equation modeling (SEM). International journal of academic research in business and social sciences, 3(2), 346-365.

Park, K., Min, H., & Min, S. (2016). Inter-relationship among risk taking propensity, supply chain security practices, and supply chain disruption occurrence. Journal of Purchasing and Supply Management, 22(2), 120-130.

Ramanathan, U., & Gunasekaran, A. (2014). Supply chain collaboration: Impact of success in long-term partnerships. International Journal of Production Economics, 147, 252-259.

Ramish, A., & Aslam, H. (2016). Measuring supply chain knowledge management (SCKM) performance based on double/triple loop learning principle. International Journal of Productivity and Performance Management, 65(5), 704-722.

Revilla, E., & Saenz, M. J. (2017). The impact of risk management on the frequency of supply chain disruptions: a configurational approach. International Journal of Operations & Production Management, 37(5), 557-576.

Rodrigues, E. F., Pizzolato, N. D., Andrade Botelho, G., & Souza, R. O. (2014). A Economicidade dos Centros de Distribuição: O Caso do Varejo. Sistemas & Gestão, 9(4), 518-526.

Roehrich, J. K., Grosvold, J., & U. Hoejmose, S. (2014). Reputational risks and sustainable supply chain management: Decision making under bounded rationality. International Journal of Operations & Production Management, 34(5), 695-719.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.

Sadeghi, A. (2015). Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts. International Journal of Production Economics, 169, 44-54.

Sindhuja, P. N. (2014). Impact of information security initiatives on supply chain performance. Information Management & Computer Security, 22(5), 450-473.

Soliman, A., Bellaj, T., & Khelifa, M. (2016). An integrative psychological model for radicalism: Evidence from structural equation modeling. Personality and Individual Differences, 95, 127-133.

Torres, F. E., Teodoro, P. E., Ribeiro, L. P., Correa, C. C. G., Hernandes, F. B., Fernandes, R. L., Gomes, A.C., & Lopes, K. V. (2015). Correlations and path analysis on oil content of castor genotypes. Bioscience Journal, 31(5), 1363-1369.

Tripathy, S., Aich, S., Chakraborty, A., & Lee, G. M. (2016). Information technology is an enabling factor affecting supply chain performance in Indian SMEs: A structural equation modelling approach. Journal of Modelling in Management, 11(1), 269-287.

Um, J., Lyons, A., Lam, H. K., Cheng, T. C. E., & Dominguez-Pery, C. (2017). Product variety management and supply chain performance: A capability perspective on their relationships and competitiveness implications. International Journal of Production Economics, 187, 15-26.

Wieland, A., & Marcus Wallenburg, C. (2013). The influence of relational competencies on supply chain resilience: a relational view. International Journal of Physical Distribution & Logistics Management, 43(4), 300-320.




DOI: https://doi.org/10.5585/exactaep.v17n4.8698

Direitos autorais 2019 Exacta

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

Tempo médio entre a submissão e primeira resposta de avaliação: 120 dias

Exacta – Engenharia de Produção

e-ISSN: 1983-9308
ISSN: 1678-5428
www.revistaexacta.org.br

Exacta  ©2020 Todos os direitos reservados.