Financial evaluation of a smart home project for a residence in Ceará

Authors

DOI:

https://doi.org/10.5585/exactaep.2021.17173

Keywords:

Optimization, Smart home, Energy, Net present value.

Abstract

Smart homes are a trend worldwide. They allow optimized energy usage, allowing households to reduce electricity bills or even make profits. The number of smart homes in US and UK attained 40.3 million and 5.3 million, respectively, in 2018. By 2024, 53.1% of all households in US and 39% in UK will be expected to become smart homes. However, in Brazil, there are only 1.2 million smart homes registered in 2018. Although smart homes seem to be the future for homes, many customers have the perception that a transition from current homes to smart ones is unprofitable due to the amount of initial investment required and the risk of no returns to cover this investment. This paper proposes a case study with the goal to evaluate the profitability of many projects of smart homes implementation to a given house in Ceará. Focusing on the net present value maximization, the results indicate the set of home appliances/technologies that should be acquired so that the investment made by the householder has a positive financial return.

Downloads

Download data is not yet available.

Author Biography

Michael David de Souza Dutra, Polytechnique Montréal

Eu obtive um doutorado na Polytechnique Montréal em matemática aplicada em energia. Departamento: Industrial eng. Area de atuação: Pesquisa operacioinal. 

References

Anvari, S., Desideri, U., & Taghavifar, H. (2020). Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy. Applied Energy, 258, 114105. https://doi.org/10.1016/j.apenergy.2019.114105

Akter, M. N., Mahmud, M. A., & Oo, A. M. (2017). Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332-346. http://dx.doi.org/10.1016/j.enbuild.2016.12.065

Handbook, A. F., & Fundamentals, H. V. A. C. (2013). SI edition. American Society of Heating, Refrigerating, and Air-Conditioning Engineers-Atlanta-2013. https://www.ashrae.org/technical-resources/ashrae-handbook

Bai, B., Xiong, S., Song, B., & Xiaoming, M. (2019). Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China. Renewable and Sustainable Energy Reviews, 109, 213-229. https://doi.org/10.1016/j.rser.2019.03.048

Beck, T., Kondziella, H., Huard, G., & Bruckner, T. (2017). Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity. Applied Energy, 188, 604-619. http://dx.doi.org/10.1016/j.apenergy.2016.12.041

Chatzisideris, M. D., Ohms, P. K., Espinosa, N., Krebs, F. C., & Laurent, A. (2019). Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption. Applied Energy, 256, 113977. https://doi.org/10.1016/j.apenergy.2019.113977

Coffman, M., Bernstein, P., & Wee, S. (2017). Integrating electric vehicles and residential solar PV. Transport Policy, 53, 30-38. https://doi.org/10.1016/j.tranpol.2016.08.008

Coria, G., Penizzotto, F., & Pringles, R. (2019). Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors. Renewable Energy, 133, 1167-1177. https://doi.org/10.1016/j.renene.2018.08.098

Dranka, G. G., & Ferreira, P. (2020). Towards a smart grid power system in Brazil: Challenges and opportunities. Energy Policy, 136, 111033. https://doi.org/10.1016/j.enpol.2019.111033

DeOreo, W. B., Mayer, P. W., Dziegielewski, B., & Kiefer, J. (2016). Residential end uses of water, version 2. Water Research Foundation. https://www.waterrf.org/research/projects/residential-end-uses-water-version-2

de Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A realistic energy optimization model for smart‐home appliances. International Journal of Energy Research, 43(8), 3237-3262. https://doi.org/10.1002/er.4454

de Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A general framework for customized transition to smart homes. Energy, 189, 116138. http://dx.doi.org/10.1016/j.energy.2019.116138

de Souza Dutra, M. D., da Conceição Júnior, G., de Paula Ferreira, W., & Chaves, M. R. C. (2020). A customized transition towards smart homes: A fast framework for economic analyses. Applied Energy, 262, 114549. https://doi.org/10.1016/j.apenergy.2020.114549

Espinoza, R., Muñoz-Cerón, E., Aguilera, J., & de la Casa, J. (2019). Feasibility evaluation of residential photovoltaic self-consumption projects in Peru. Renewable energy, 136, 414-427. http://dx.doi.org/10.1016/j.renene.2019.01.003

Gur, K., Chatzikyriakou, D., Baschet, C., & Salomon, M. (2018). The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis. Energy Policy, 113, 535-545. https://doi.org/10.1016/j.enpol.2017.11.002

Kichou, S., Skandalos, N., & Wolf, P. (2019). Energy performance enhancement of a research centre based on solar potential analysis and energy management. Energy, 183, 1195-1210. https://doi.org/10.1016/j.energy.2019.07.036

Leite, A. P., Falcão, D. M., & Borges, C. L. (2006). Modelagem de usinas eólicas para estudos de confiabilidade. Sba: Controle & Automação Sociedade Brasileira de Automatica, 17(2), 177-188. https://www.scielo.br/j/ca/a/m4yB8F9kVy74sb7qwPg39Yz/?lang=pt

Mazzeo, D. (2019). Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis. Energy, 168, 310-331. https://doi.org/10.1016/j.energy.2018.11.057

Menezes, H. L. D. S. (2014). Avaliação da aplicação da modalidade tarifária horária branca: Estudo de caso para consumidores residenciais. https://bdm.unb.br/bitstream/10483/9743/1/2014_HenriqueLeaodeSaMenezes.pdf

O'Shaughnessy, E., Cutler, D., Ardani, K., & Margolis, R. (2018). Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings. Applied energy, 228, 2165-2175. https://doi.org/10.1016/j.apenergy.2018.07.048

Sanguinetti, A., Karlin, B., & Ford, R. (2018). Understanding the path to smart home adoption: Segmenting and describing consumers across the innovation-decision process. Energy research & social science, 46, 274-283. https://doi.org/10.1016/j.erss.2018.08.002

Say, K., John, M., Dargaville, R., & Wills, R. T. (2018). The coming disruption: The movement towards the customer renewable energy transition. Energy Policy, 123, 737-748. https://doi.org/10.1016/j.enpol.2018.09.026

Schopfer, S., Tiefenbeck, V., & Staake, T. (2018). Economic assessment of photovoltaic battery systems based on household load profiles. Applied energy, 223, 229-248. https://doi.org/10.1016/j.apenergy.2018.03.185

da Silva, A. J., Nascimento, C. R. C., da Silva, L. F., & Lucas, T. D. P. B. (2011). Análise topoclimática em unidade de conservação urbana a partir da temperatura e umidade relativa do ar. e-Scientia, 4(1), 21-30. https://www.ufmg.br/estacaoecologica/portfolio-item/analise-topoclimatica-em-unidade-de-conservacao-urbana-a-partir-da-temperatura-e-umidade-relativa-do-ar/

Uddin, K., Gough, R., Radcliffe, J., Marco, J., & Jennings, P. (2017). Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Applied Energy, 206, 12-21. https://doi.org/10.1016/j.apenergy.2017.08.170

Van Der Stelt, S., AlSkaif, T., & van Sark, W. (2018). Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances. Applied Energy, 209, 266-276. https://doi.org/10.1016/j.apenergy.2017.10.096

Xie, Y., Gilmour, M. S., Yuan, Y., Jin, H., & Wu, H. (2017). A review on house design with energy saving system in the UK. Renewable and Sustainable Energy Reviews, 71, 29-52. https://doi.org/10.1016/j.rser.2017.01.004

Yu, H. J. J. (2018). A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030. Energy Policy, 113, 673-687. https://doi.org/10.1016/j.enpol.2017.11.005.

Published

2022-01-21

How to Cite

de Souza Dutra, M. D. (2022). Financial evaluation of a smart home project for a residence in Ceará. Exacta, 20(1), 176–197. https://doi.org/10.5585/exactaep.2021.17173