A computational structure for simulation optimization based on Simulated Annealing to evaluate the performance of Emergency Medical Systems

the case of SAMU in the cities of Ouro Preto and Mariana

Authors

DOI:

https://doi.org/10.5585/exactaep.2022.21836

Keywords:

simulation optimization, simulated annealing, emergency medical services,, response time, SAMU

Abstract

The response time of an Emergency Medical System (EMS) is a preponderant metric of efficiency, since providing fast assistance to emergency victims determines the minimization of permanent sequelae while maximizing the patient's survival rate. In this article, we propose a simulation model via optimization, developed in Python language, capable of evaluating the performance of SME's. We applied real data from a Brazilian SME to the proposed method and verified, from the results obtained, which strategic configurations would result in a reduction of approximately 10% in the average response time. In addition, the importance of considering other variables together with the number of inhabitants was verified, in determining the number of ambulances necessary to meet the emergency demands in the pre-hospital service.

Downloads

Download data is not yet available.

Author Biographies

Thaise Regina Matos de Morais, Universidade Federal de Ouro Preto / Ouro Preto, Minas Gerais - Brasil

Mestre em Enganharia de Produção pela Universidade Federal de Ouro. Possui Pós graduação em Engenharia de Produção pela Pontificia Universidade Católica de Minas Gerais (PUC MINAS - 2018) e também graduação em Engenharia de Produção Universidade Presidente Antônio Carlos (2016). Atualmente atua como coordenadora de processos.

Aloísio de Castro Gomes Júnior, Universidade Federal de Ouro Preto / Ouro Preto, Minas Gerais - Brasil

Doutor e Mestre em Engenharia de Produção pela UFMG. Atua desde 2006 no ensino de Engenharia de Produção, com ênfase na área de Pesquisa Operacional, tanto de graduação como de pós-graduação. É professor adjunto da UFOP.

Lasara Fabricia Rodrigues, Universidade Federal de Minas Gerais / Belo Horizonte - MG, Brasil

Possui graduação em Engenharia de Produção pela Universidade Federal de Ouro Preto (2004), mestrado em Engenharia de Produção pela Universidade Federal de Minas Gerais (2006) e doutorado em Engenharia de Produção pela Universidade Federal de São Carlos (2014). Atualmente, é professora do Departamento de Engenharia de Produção (DEP) da Universidade Federal de Minas Gerais (UFMG) e dos Programas de Pós-Graduação em Engenharia de Produção da Universidade Federal de Minas Gerais (PPGEP-UFMG) e da Universidade Federal de Ouro Preto (PPGEP-UFOP). Tem experiência na área de Engenharia de Produção e suas principais linhas de pesquisa são voltadas para as áreas de Teoria de Filas, Simulação, Modelos de Localização Probabilística, Análise Envoltória de Dados e aplicações de Pesquisa Operacional em sistemas logísticos, de manufatura e de saúde.

 

References

Aboueljinane, L., Sahin, E., Jemai, Z., & Marty, J. (2014). A simulation study to improve the performance of an emergency medical service: Application to the French Val-de-Marne department. Simulation Modelling Practice and Theory, 47, 46–59. https://doi.org/10.1016/j.simpat.2014.05.007

Aringhieri, R., Carello, G., & Morale, D. (2013). Supporting decision making to improve the performance of an Italian Emergency Medical Service. Annals of Operations Research, 236(1), 131–148. https://doi.org/10.1007/s10479-013-1487-0

Bélanger, V., Lanzarone, E., Nicoletta, V., Ruiz, A., & Soriano, P. (2020). A recursive simulation-optimization framework for the ambulance location and dispatching problem. European Journal of Operational Research, 286(2), 713–725. https://doi.org/10.1016/j.ejor.2020.03.041

Blackwell, T. H., & Kaufman, J. S. (2002). Response Time Effectiveness:Comparison of Response Time and Survival in an Urban Emergency Medical Services System. Academic Emergency Medicine, 9(4), 288–295. https://doi.org/10.1197/aemj.9.4.288

Byrne, J. P., Mann, N. C., Dai, M., Mason, S. A., Karanicolas, P., Rizoli, S., & Nathens, A. B. (2019). Association Between Emergency Medical Service Response Time and Motor Vehicle Crash Mortality in the United States. JAMA Surgery, 154(4), 286–293.

https://doi.org/10.1001/jamasurg.2018.5097

Carson, Y., & Maria, A. (1997). Simulation optimization. Proceedings of the 29th Conference on Winter Simulation - WSC ’97. https://doi.org/10.1145/268437.268460

Coelho, G. F., & Pinto, L. R. (2018). Kriging-based simulation optimization: An emergency medical system application. Journal of the Operational Research Society, 69(12), 2006–2020. https://doi.org/10.1080/01605682.2017.1418149

Da Silva, G. F., Frazzon, E. M., & Casarotto Filho, N. (2016). Proposta de método de otimização-simulação para apoiar a tomada de decisão em internalização de processos produtivos. Exacta, 13(3), 155–166. https://doi.org/10.5585/exactaep.v13n3.5967

Felix, J. C., Peixoto, C. S., & Edwige, C. A. (2021). O planejamento de suprimentos utilizando-se a teoria de filas e simulação computacional em uma oficina de recuperação de componentes de vagões. Exacta. https://doi.org/10.5585/exactaep.2021.19577

Filho, V. H. dos S., Silva, L. de O., & Júnior, J. da S. F. (2019). Simulação a eventos discretos em uma empresa Brasileira prestadora de serviços imobiliários no Sudoeste Mineiro. Exacta, 17(2), 29–45. https://doi.org/10.5585/exactaep.v17n2.8034

Fisher, M. L. (2004). The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science, 50(12_supplement), 1861–1871. https://doi.org/10.1287/mnsc.1040.0263

Fukushima, F., & Moriya, T. (2021). Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system ― potential for time savings during ambulance running. IATSS Research, 45(2), 182–189. https://doi.org/10.1016/j.iatssr.2020.08.001

Golabian, H., Arkat, J., Farughi, H., & Tavakkoli-Moghaddam, R. (2021). A simulation-optimization algorithm for return strategies in emergency medical systems. SIMULATION, 97(9), 565–588. https://doi.org/10.1177/00375497211006175

Gonzalez, R. P., Cummings, G. R., Phelan, H. A., Mulekar, M. S., & Rodning, C. B. (2009). Does increased emergency medical services prehospital time affect patient mortality in rural motor vehicle crashes? A statewide analysis. The American Journal of

Surgery, 197(1), 30–34. https://doi.org/10.1016/j.amjsurg.2007.11.018

Hakimi, S. L. (1964). Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. Operations Research, 12(3), 450–459. https://doi.org/10.1287/opre.12.3.450

Instituto Brasileiro de Geografia e Estatística (2022). https://cidades.ibge.gov.br/brasil/panorama.

Junges, V. D. C., Romio, A. M., Simonetto, E. D. O., Campos, S. A. P. de, & Bobsin, D. (2021). Simulação baseada em dinâmica de sistemas: avaliação de cenários em uma associação de reciclagem. Exacta. https://doi.org/10.5585/exactaep.2021.17058

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

McCormack, R., & Coates, G. (2015). A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival. European Journal of Operational Research, 247(1), 294–309.

https://doi.org/10.1016/j.ejor.2015.05.040

Moraes, D. G. de, & Silva, A. M. da. (2021). Simulação discreta aplicada à gestão de filas no varejo. Exacta, 19(3), 659–677. https://doi.org/10.5585/exactaep.2021.14842

Nair, R., & Miller-Hooks, E. (2009). Evaluation of Relocation Strategies for Emergency Medical Service Vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2137(1), 63–73. https://doi.org/10.3141/2137-08

Nogueira, L. C., Pinto, L. R., & Silva, P. M. S. (2014). Reducing Emergency Medical Service response time via the reallocation of ambulance bases. Health Care Management Science, 19(1), 31–42. https://doi.org/10.1007/s10729-014-9280-4

Pell, J. P. (2001). Effect of reducing ambulance response times on deaths from out of hospital cardiac arrest: cohort study. BMJ,

(7299), 1385–1388. https://doi.org/10.1136/bmj.322.7299.1385

Pons, P. T., & Markovchick, V. J. (2002). Eight minutes or less: does the ambulance response time guideline impact trauma patient outcome? The Journal of Emergency Medicine, 23(1), 43–48. https://doi.org/10.1016/s0736-4679(02)00460-2

Zaffar, M. A., Rajagopalan, H. K., Saydam, C., Mayorga, M., & Sharer, E. (2016). Coverage, survivability or response time: A comparative study of performance statistics used in ambulance location models via simulation–optimization. Operations

Research for Health Care, 11, 1–12. https://doi.org/10.1016/j.orhc.2016.08.001

Zhen, L., Wang, K., Hu, H., & Chang, D. (2014). A simulation optimization framework for ambulance deployment and relocation problems. Computers & Industrial Engineering, 72, 12–23. https://doi.org/10.1016/j.cie.2014.03.008

Published

2022-10-13 — Updated on 2024-06-11

How to Cite

Regina Matos de Morais, T., de Castro Gomes Júnior, A., & Rodrigues, L. F. (2024). A computational structure for simulation optimization based on Simulated Annealing to evaluate the performance of Emergency Medical Systems: the case of SAMU in the cities of Ouro Preto and Mariana. Exacta, 22(2), 552–586. https://doi.org/10.5585/exactaep.2022.21836