Exploring the relationship between analytical orientation and supply chain resilience

the mediating role of anticipation and adaptation

Authors

  • Murilo Zamboni Alvarenga Universidade Federal do Espírito Santo
  • Marcelo Moll Brandão Universidade Federal do Espírito Santo
  • Marcos Paulo Valadares de Oliveira Universidade Federal do Espírito Santo
  • Hélio Zanquetto Filho Universidade Federal do Espírito Santo
  • Alamir Costa Louro Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.5585/2024.22440

Keywords:

supply chain resilience, analytical orientation, prevention, adaption, recovery

Abstract

The present study addresses the impact of analytical orientation on supply chains, a topic that has been relatively underexplored. The main objective of this work is to expand our understanding of how analytical orientation affects resilience in supply chains. To achieve this objective, a survey was conducted with 143 key professionals from manufacturing industries, and the data were analyzed using structural equation modeling. The results highlighted the significance of the tested mechanisms in explaining the relationship between analytical orientation and resilience. Thus, the main theoretical contribution of this article is the identification of prevention and adaptation as mediators in the relationship between analytical orientation and supply chain resilience. Recognizing the importance of prevention and adaptation as mediators, managers can implement practical strategies to strengthen these aspects and enhance the resilience of their supply chains in the face of challenges. This approach reduces vulnerabilities, improves responsiveness, and maintains operational efficiency, thereby generating a competitive advantage in the market.

Downloads

Download data is not yet available.

Author Biographies

Murilo Zamboni Alvarenga, Universidade Federal do Espírito Santo

Doutorando e mestre em Administração pelo programa de pós-graduação em Administração da Universidade Federal do Espírito Santo.

Marcelo Moll Brandão, Universidade Federal do Espírito Santo

Doutor em Administração pela EAESP/FGV com tese desenvolvida em comportamento do consumidor no varejo (2012). Possui graduação em Administração pela Universidade Federal do Espírito Santo (1996) e mestrado em Ciências Contábeis pela FUCAPE - Fundação Instituto Capixaba de Pesq. em Contabilidade, Economia e Finanças (2006). Atualmente é professor da graduação e PPG da administração e professor colaborador do PPG do curso de contabilidade da Universidade Federal do Espírito Santo (UFES).

Marcos Paulo Valadares de Oliveira, Universidade Federal do Espírito Santo

Professor Associado do Departamento de Administração da Universidade Federal do Espírito Santo, pesquisador e coordenador do núcleo de pesquisas em Tecnologias e Processos Organizacionais - TecPrO e gerente de projetos do Núcleo Interdisciplinar de Pesquisa e Extensão em Logística (NIPE-Log/UFMG). Possui graduação em Administração pela Universidade Federal de Minas Gerais (2003), mestrado (2006) e doutorado (2009) em Administração - Gestão de Cadeias de Suprimentos e Operações pela Universidade Federal de Minas Gerais. Foi visiting scholar e realizou pós-doutorado (Bolsista CAPES) na North Carolina State University.

Hélio Zanquetto Filho, Universidade Federal do Espírito Santo

raduado em Engenharia Civil pela Universidade Federal do Espírito Santo (1991), Mestre em Engenharia de Produção pela Pontifícia Universidade Católica do Rio de Janeiro (1994) e doutor em Engenharia de Produção pela PUC-Rio (2003). Atualmente é professor Titular do Departamento de Administração da Universidade Federal do Espírito Santo (UFES).

Alamir Costa Louro, Universidade Federal do Espírito Santo

Doutorado em Administração pela UFES. Pesquisador Visitante Universidade de Ljubljana - Slovenia(2018). Mestre em Administração pela UFES (2014). Possui graduação em Ciência da Computação pela UFES (2002), PMP, ITIL V3, MCTS. Atualmente é funcionário Público no TJ-ES (desde 2011) e atuou como Coordenador dos Sistemas do Poder Juciário do Espirito Santo.

References

Acito, F., & Khatri, V. (2014). Business analytics: Why now and what next? Business Horizons, 57(5), 565–570. https://doi.org/10.1016/j.bushor.2014.06.001

Alvarenga, M. Z., Oliveira, M. P. V. de, Zanquetto-Filho, H., Desouza, K. C., & Ceryno, P. S. (2022). Is your supply chain ready for the next disruption? Building Resilient Chains. Journal of Business Management - RAE, 62(1), 1–17. https://doi.org/10.1590/S0034-759020220106 IS

Birkel, H. S., & Hartmann, E. (2020). Internet of Things – the future of managing supply chain risks. Supply Chain Management: An International Journal, 25(5), 535–548. https://doi.org/10.1108/SCM-09-2019-0356

Blumenthal, D., & Fowler, E. J. (2020). It’s Not Too Early to Prepare for the Next Pandemic. Retrieved April 28, 2020, from https://hbr.org/2020/04/its-not-too-early-to-prepare-for-the-next-pandemic

Bousquin, J. (2022). Ukraine war compounds supply chain issues in construction. Retrieved from https://www.supplychaindive.com/news/ukraine-war-supply-chain-construction/619726/

Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain Management, 50(3), 55–73. https://doi.org/10.1111/jscm.12050

Cao, G., Duan, Y., & Li, G. (2015). Linking Business Analytics to Decision Making Effectiveness: A Path Model Analysis. IEEE Transactions on Engineering Management, 62(3), 384–395. https://doi.org/10.1109/TEM.2015.2441875

Carvalho, H., Barroso, A. P., Machado, V. H. ., Azevedo, S., & Cruz-Machado, V. (2012). Supply chain redesign for resilience using simulation. Computers & Industrial Engineering, 62(1), 329–341. https://doi.org/10.1016/j.cie.2011.10.003

Castillo, C. (2023). Is there a theory of supply chain resilience? A bibliometric analysis of the literature. International Journal of Operations and Production Management, 43(1). https://doi.org/10.1108/IJOPM-02-2022-0136

Ceryno, P. S., Scavarda, L. F., Klingebiel, K., & Yüzgülec, G. (2013). Supply chain risk management: A content analysis approach. International Journal of Industrial Engineering and Management, 4(3), 141–150.

Chae, K., & Olson, D. (2013). Business Analytics for Supply Chains: A Dynamic-Capabilities Framework. International Journal of Information Technology & Decision Making, 12(01), 9–26. https://doi.org/10.1142/S0219622013500016

Chae, K., Olson, D., & Sheu, C. (2014). The impact of supply chain analytics on operational performance: a resource-based view. International Journal of Production Research, 52(16), 4695–4710. https://doi.org/10.1080/00207543.2013.861616

Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review, 46(1), 52–61. https://doi.org/10.1108/IJOPM-10-2012-0449

Christopher, M., & Peck, H. (2004). Building the resilient supply chain. International Journal of Logistics Management, 15(2), 1–13. https://doi.org/10.1108/09574090410700275

Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production Planning & Control, 21(7), 680–694. https://doi.org/10.1080/09537280903551969

Côrte-Real, N., Oliveira, T., & Ruivo, P. (2016). Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379–390. https://doi.org/10.1016/j.jbusres.2016.08.011

Craighead, C. W., Ketchen, D. J., & Darby, J. L. (2020). Pandemics and Supply Chain Management Research: Toward a Theoretical Toolbox*. Decision Sciences, 51(4), 838–866. https://doi.org/10.1111/deci.12468

Craven, M., Mysore, M., Singhal, S., & Wilson, M. (2020). COVID-19: Implications for business. EUA.

Davenport, T. H. (2006). Competing on Analytics. Harvard Business Review, 1–10. Retrieved from http://libproxy.trinity.edu:80/login?url=http://search.ebscohost.com/login.aspx?

direct=true&db=a9h&AN=31316546&site=ehost-live

Davenport, T. H. (2013). Analytics 3.0. Harvard Business Review, 91(12), 64–72. https://doi.org/10.1017/CBO9781107415324.004

Davenport, T. H., Harris, J. G., De Long, D. W., & Jacobson, A. L. (2001). Data to Knowledge to Results: Building an Analytics Capability. California Management Review, 43.

Dennehy, D., Oredo, J., Spanaki, K., Despoudi, S., & Fitzgibbon, M. (2021). Supply chain resilience in mindful humanitarian aid organizations: the role of big data analytics. International Journal of Operations and Production Management, 41(9), 1417–1441. https://doi.org/10.1108/IJOPM-12-2020-0871

Donadoni, M., Caniato, F., & Cagliano, R. (2018). Linking product complexity, disruption and performance: the moderating role of supply chain resilience. Supply Chain Forum, 19(4), 300–310. https://doi.org/10.1080/16258312.2018.1551039

Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2021). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research, 59(1), 110–128. https://doi.org/10.1080/00207543.2019.1582820

Graeml, A. R., Peinado, J., Alexandre Reis, G., Jurandir, P., Graeml, A. R., & Peinado, J. (2014). O efeito das capacidades logísticas na construção de resiliência da cadeia de suprimentos. Revista de Administração (São Paulo), 49(4), 642–655. https://doi.org/10.5700/rausp1174

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. . (2009). Análise multivariada de dados (6th ed.). Porto Alegre: Bookman.

Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V. M., & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47–58. https://doi.org/10.1016/j.ijpe.2004.02.007

Hamel, G., & Välikangas, L. (2003). The Quest for Resilience. Harvard Business Review.

Hayes, A. F., Montoya, A. K., & Rockwood, N. J. (2017). The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australasian Marketing Journal. https://doi.org/10.1016/j.ausmj.2017.02.001

Institute, B. C. (2018). Supply chain resilience report 2018. Retrieved from https://www.thebci.org/uploads/assets/uploaded/c50072bf-df5c-4c98-a5e1876aafb15bd0.pdf

Ittmann, H. W. (2015). The impact of big data and business analytics on supply chain management. Journal of Transport and Supply Chain Management, 9(1), 1–9. https://doi.org/10.4102/jtscm.v9i1.165

Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019). Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility. In Handbook of ripple effects in the supply chain (pp. 309–332). https://doi.org/10.1007/978-3-030-14302-2_15

Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: an empirical study. Supply Chain Management: An International Journal, 16(4), 246–259. https://doi.org/10.1108/13598541111139062

Jüttner, U., Peck, H., & Christopher, M. (2003). Supply Chain Risk Management : Outlining an Agenda for Future Research. International Journal of Logistics: Research and Applications, 6(4), 197–210.

Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171, 116–133. https://doi.org/10.1016/j.ijpe.2015.10.023

Kumar, R., & Boudreau, J. (2019). CIOs: Time to Reinvent Your Supply Chains. Retrieved December 27, 2019, from https://www.informationweek.com/cios-time-to-reinvent-your-supply-chains/a/d-id/1335394

Kwak, D.-W., Seo, Y.-J., & Mason, R. (2018). Investigating the relationship between supply chain innovation, risk management capabilities and competitive advantage in global supply chains. International Journal of Operations & Production Management, 38(1), 2–21. https://doi.org/10.1108/IJOPM-06-2015-0390

Ladeira, M. B., Resende, P. T. V. de, Oliveira, M. P. V. de, Mccormack, K., Sousa, P. R. de, & Ferreira, R. L. (2016). Os efeitos da abordagem analítica e da gestão orientada para processos sobre o desempenho organizacional de micro e pequenas empresas brasileiras dos setores da indústria e de serviços. Gestão & Produção, 23(32), 486–502. https://doi.org/10.1590/S0104-530X2012000200012

Laursen, G. H. N., & Thorlund, J. (2010). Business Analytics for Managers: Taking Business Intelligence Beyond Reporting. In depth Report. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:BUSINESS+ANALYTICS#7

Lavastre, O., Gunasekaran, A., & Spalanzani, A. (2012). Supply chain risk management in French companies. Decision Support

Systems, 52(4), 828–838. https://doi.org/10.1016/j.dss.2011.11.017

Martínez Sánchez, A., & Pérez Pérez, M. (2005). Supply chain flexibility and firm performance. International Journal of Operations & Production Management, 25(7), 681–700. https://doi.org/10.1108/01443570510605090

Merschmann, U., & Thonemann, U. W. (2011). Supply chain flexibility, uncertainty and firm performance: An empirical analysis of German manufacturing firms. International Journal of Production Economics, 130(1), 43–53. https://doi.org/10.1016/j.ijpe.2010.10.013

Norrman, A., & Jansson, U. (2004). Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. International Journal of Physical Distribution & Logistics Management, 34, 434–456. https://doi.org/10.1108/09600030410545463

Oliveira, M. P. V. de P. V. de, & Handfield, R. (2019). Analytical foundations for development of real-time supply chain capabilities. International Journal of Production Research, 0(0), 1–19. https://doi.org/10.1080/00207543.2018.1493240

Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.03.059

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The Evolution of Resilience in Supply Chain Management: A Retrospective on Ensuring Supply Chain Resilience. Journal of Business Logistics, 40(1), 56–65. https://doi.org/10.1111/jbl.12202

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124–143. https://doi.org/10.1108/09574090910954873

Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production

Economics, 224, 107546. https://doi.org/10.1016/j.ijpe.2019.107546

Ramasesh, R. V., & Browning, T. R. (2014). A conceptual framework for tackling knowable unknown unknowns in project management. Journal of Operations Management. https://doi.org/10.1016/j.jom.2014.03.003

Ringle, C. M., Wende, S., & Becker, J.-M. (2014). SmartPLS 3.0. Hamburg, Germany: SmartPLS.

Ruel, S., & El Baz, J. (2021). Disaster readiness’ influence on the impact of supply chain resilience and robustness on firms’ financial performance: a COVID-19 empirical investigation. International Journal of Production Research, 1–19. https://doi.org/10.1080/00207543.2021.1962559

Sodhi, M. S., Son, B.-G., & Tang, C. S. (2012). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1–13. https://doi.org/10.1111/j.1937-5956.2011.01251.x

Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595–605. https://doi.org/10.1016/j.bushor.2014.06.004

Swafford, P. M., Ghosh, S., & Murthy, N. (2006). The antecedents of supply chain agility of a firm: Scale development and model testing. Journal of Operations Management, 24(2), 170–188. https://doi.org/10.1016/j.jom.2005.05.002

Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2), 288–297. https://doi.org/10.1016/j.ijpe.2008.09.002

Tang, O., & Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of Production Economics, 133(1), 25–34. https://doi.org/10.1016/j.ijpe.2010.06.013

Teo, T. S. H., Nishant, R., & Koh, P. B. L. (2016). Do shareholders favor business analytics announcements? Journal of Strategic Information Systems, 25(4), 259–276. https://doi.org/10.1016/j.jsis.2016.05.001

Thomé, A. M. T., Scavarda, L. F., Pires, S. R. I., Ceryno, P., & Klingebiel, K. (2014). A multi-tier study on supply chain flexibility in the automotive industry. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2014.07.024

Thun, J.-H., & Hoenig, D. (2011). An empirical analysis of supply chain risk management in the German automotive industry. International Journal of Production Economics, 131(1), 242–249. https://doi.org/10.1016/j.ijpe.2009.10.010

Trkman, P., Mccormack, K., Paulo, M., Oliveira, V. De, & Bronzo, M. (2010). The impact of business analytics on supply chain

performance. Decision Support Systems, 49(3), 318–327. https://doi.org/10.1016/j.dss.2010.03.007

Tummala, R., & Schoenherr, T. (2011). Assessing and managing risks using the Supply Chain Risk Management Process (SCRMP). Supply Chain Management: An International Journal, 16(6), 474–483. https://doi.org/10.1108/13598541111171165

Published

2024-03-11

How to Cite

Alvarenga, M. Z., Brandão, M. M., Oliveira, M. P. V. de, Filho, H. Z., & Louro, A. C. (2024). Exploring the relationship between analytical orientation and supply chain resilience: the mediating role of anticipation and adaptation. Exacta, e22440. https://doi.org/10.5585/2024.22440

Issue

Section

Papers