Uma nova abordagem para o problema de roteamento de veículos green bi-objetivo: otimização na distribuição de jornais

Júlio César Ferreira, Maria Teresinha Arns Steiner

Resumo


O objetivo deste trabalho é apresentar uma metodologia para fornecer uma solução para o Problema de Roteamento de Veículos Green Bi-objetivo (Bi-objective Green Vehicle Routing Problem, BGVRP). A metodologia, ilustrada por meio de um estudo de caso (problema de distribuição de jornais) e instâncias da literatura, foi dividida em três etapas: Etapa 1, tratamento dos dados; Etapa 2, abordagens meta-heurísticas (híbridas ou não híbridas), utilizadas comparativamente; Etapa 3, análise dos resultados, com comparação dos algoritmos. Uma otimização de 19,9% foi alcançada para a Função Objetivo 1 (FO1; minimização das emissões de CO2) e, consequentemente, o mesmo percentual para a minimização da distância total, e 87,5% para a Função Objetivo 2 (FO2; minimização da diferença na demanda). Abordagens meta-heurísticas híbridas alcançaram resultados superiores para o estudo de caso e as instâncias. Desta forma, o procedimento aqui apresentado poderá trazer benefícios para a sociedade já que considera questões ambientais, além do balanceamento do trabalho entre os roteiros, garantindo economia e satisfação para possíveis usuários.


Palavras-chave


Problema de Roteamento de Veículos Green Bi-objetivo; Logística Verde; Procedimentos meta-heurísticos; Estudo de caso; Instâncias da literatura.

Texto completo:

PDF (English)

Referências


Abad, H. K. E. A., Vahdani, B., Sharifi, M., & Etebari, F. (2018). A bi-objective model for pickup and delivery pollution-routing problem with integration and consolidation shipments in cross-docking system. J. Clean. Prod., 193, 784–801. https://doi.org/10.1016/j.jclepro.2018.05.046.

Amer, H., Salman, N., Hawes, M., Chaqfeh, M., Mihaylova, L., & Mayfield, M. (2016). An improved simulated annealing technique for enhanced mobility in smart cities. Sensors (Switzerland), 16, 1-23. https://doi.org/10.3390/s16071013.

Braekers, K., Ramaekers, K., & Nieuwenhuyse, I. V. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300-313. https://doi.org/10.1016/j.cie.2015.12.007.

Carvalho, C. H. R. (2011). 1606: Texto para discussão. Emissões relativas de poluentes do transporte motorizado de passageiros nos grandes centros urbanos brasileiros. Instituto de Pesquisa Econômica Aplicada (IPEA), Brasília, april, 2011.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–582. https://www.jstor.org/stable/167703.

Coello, C. A. (2000). MOPSO: a proposal for multiple objective particle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation, 2, CEC 2002, 1051-1056. https://doi.org/10.1109/CEC.2002.1004388.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6, 80-91. https://www.jstor.org/stable/2627477.

Deb, K., Pratap. A., Aguarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. [S.l.]: John Wiley & Sons, Inc.

Demir, E., Bektas, T., & Laporte, G. (2014). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), 775-793. https://doi.org/10.1016/j.ejor.2013.12.033.

Ebrahimi, S. B. (2018). A stochastic multi-objective location-allocation-routing problem for tire supply chain considering sustainability aspects and quantity discounts. J. Clean. Prod., 198, 704-720. https://doi.org/10.1016/j.jclepro.2018.07.059.

Ehrgott, M., Wang, J. Y. T., Raith, A., & Van Houtte, C. (2012). A bi-objective cyclist route choice model. Transp. Res. Part A Policy Pract, 46, 652–663. https://doi.org/10.1016/j.tra.2011.11.015.

Erdelic, T., & Caric, T. (2019). A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. Journal of Advanced Transportation, 2019, 1-48. https://doi.org/10.1155/2019/5075671.

Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M. H. K., & Tavakkoli-Moghaddam, R. (2018). A Bi-objective green home health care routing problem. J. Clean. Prod, 200, 423–443. https://doi.org/10.1016/j.jclepro.2018.07.258.

Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle routing. Networks, 11(2), 109-124. https://doi.org/10.1002/net.3230110205.

Fu, P., Li, H., Wang, X., Luo, J., Zhan, S.L., & Zuo, C. (2017). Multiobjective Location Model Design Based on Government Subsidy in the Recycling of CDW. Math. Probl. Eng. 1-9. https://doi.org/10.1155/2017/9081628.

Ferreira, J. C., Steiner, M. T. A., & Guersola, M. S. (2017). A Vehicle Routing Problem Solved Through Some Metaheuristics Procedures: A Case Study. IEEE Latin America Transactions, 15(5), 943-949. https://doi.org/10.1109/TLA.2017.7910210.

Ghezavati, V. R., & Beigi, M. (2016). Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure. Journal of Industrial Engineering International, 12, 469–483. https://doi.org/10.1007/s40092-016-0154-x.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers an Operational Research, 13(5), 533-549. https://doi.org/10.1016/0305-0548(86)90048-1.

Gong, X., Deng, Q., Gong, X., Zhang, L., Wang, H., & Xie, H. (2018). A Bee Evolutionary Algorithm for multiobjective Vehicle Routing Problem with Simultaneous Pickup and Delivery. Math. Probl. Eng. 1–21. https://doi.org/10.1155/2018/2571380.

Hassanzadeh, A., & Rasti-Barzoki, M. (2017). Minimizing total resource consumption and total tardiness penalty in a resource allocation supply chain scheduling and vehicle routing problem. Applied Soft Computing, 58, 307–323. https://doi.org/10.1016/j.asoc.2017.05.010.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm Intelligence, vol. 1. Kaufmann, San Francisco, p. 700-720.

Kumar, R. S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L. S., & Tiwari, M. K. (2016). Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Computers and Industrial Engineering, 99, 29–40. https://doi.org/10.1016/j.cie.2015.07.003.

Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H., & Lam, H. Y. (2014). Survey of Green Vehicle Routing Problem: Past and future trends. Expert Systems with Applications, 41, 1118-1138. https://doi.org/10.1016/j.eswa.2013.07.107.

Liu, X. H., Shan, M. Y., Zhang, R. L., & Zhang, L. H. (2018). Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm. Math. Probl. Eng., 1-9. https://doi.org/10.1155/2018/8961505.

NEO. Networking and Emerging Optimization. Capacitated VRP Instances. In: < http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/ >. In: jun, 3, 2019.

Norouzi, N., Sadegh-Amalnick, M., & Tavakkoli-Moghaddam, R. (2017). Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption. Optimization Letters, 11, 121–134. https://doi.org/10.1007/s11590-015-0996-y.

Poterba, J. M., & Rotemberg, J. (2018). Money in the Utility Function: An Empirical Implementation. Creative Media Partners: LLC.

Psychas, I. D., Marinaki, M., Marinakis, Y., & Migdalas, A. (2017). Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst, 8, 785–814. https://doi.org/10.1007/s12667-016-0209-5.

Rabbani, M., Saravi, N. A., & Farrokhi-Asl, H. (2017). Design of a forward/reverse logistics network with environmental considerations. Int. J. Supply Oper. Manag., 4, 115–132. https://doi.org/10.22034/2017.2.02.

Sawik, B., Faulin, J., & Pérez-Bernabeu, E. (2017). A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer. Transportation Research Procedia, 22, 305-313. https://doi.org/10.1016/j.trpro.2017.03.037.

Soleimani, H., Chaharlang, Y., & Ghaderi, H. (2018). Collection and distribution of returned-remanufactured products in a vehicle routing problem with pickup and delivery considering sustainable and green criteria. J. Clean. Prod., 172, 960-970. https://doi.org/10.1016/j.jclepro.2017.10.124.

Steiner, M. T. A., Datta, D., Steiner Neto, P. J., Scarpin, C. T., & Figueira, J. R. (2015). Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil. Omega, 52, 53-64. https://doi.org/10.1016/j.omega.2014.10.005.

Subramanian, A., Penna, P. H. V., Ochi, L. S., & Souza, M. J. F. (2013). Um algoritmo heurístico baseado em iterated local search para problemas de roteamento de veículos. In: Lopes, H. S., Rodrigues, L. C. A., Steiner, M. T. A. (eds.) Meta-Heurísticas em Pesquisa Operacional. Ed. Omnipax, Curitiba, Brazil.

Toro, E. M., Franco, J. F., Echeverri, M. G., & Guimarães, F. G. (2017). A multi-objective model for the green capacitated location-routing problem considering environmental impact. Computers and Industrial Engineering, 110, 114–125. https://doi.org/10.1016/j.cie.2017.05.013.

Validi, S., Bhattacharya, A., & Byrne, P. J. (2015). A solution method for a two-layer sustainable supply chain distribution model. Computers & Operations Research, 54, 204–217. https://doi.org/10.1016/j.cor.2014.06.015.

Wang, Y., Peng, S., Assogba, K., Liu, Y., Wang, H., Xu, M., & Wang, Y. (2018). Implementation of cooperation for recycling vehicle routing optimization in two-echelon reverse logistics networks. Sustain, 10(5), https://doi.org/10.3390/su10051358.

Wang, Z., Leng, L., Wang, S., Li, G., & Zhao, Y. (2020). A Hyperheuristic Approach for Location-Routing Problem of Cold Chain Logistics considering Fuel Consumption. Computational Intelligence and Neuroscience, 2020, 1-17. https://doi.org/10.1155/2020/8395754.




DOI: https://doi.org/10.5585/exactaep.2021.18447

Direitos autorais 2021 Exacta

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.

Tempo médio entre a submissão e primeira resposta de avaliação: 120 dias

Exacta – Engenharia de Produção

e-ISSN: 1983-9308
ISSN: 1678-5428
www.revistaexacta.org.br

Exacta  ©2022 Todos os direitos reservados.

Este obra está licenciada com uma Licença 
Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional