Computational simulation and evaluation of the use of cooking oil for biodiesel generation in municipalities of southern Brazil
DOI:
https://doi.org/10.5585/exactaep.2021.16547Keywords:
Biodiesel, Systems dynamics, Computational modeling, Vensim.Abstract
The present work aims to develop and evaluate a proposal of computational simulation submodels to evaluate the use of cooking oil in biodiesel generation to be used in selective waste collection trucks in some municipalities of the central region of Rio Grande do Sul. For the development of the models, the System Dynamics method was used. Mathematically, a System Dynamics model is a system of linear equations. In general, this system is too complex to be analytically solved, so numerical integration is used. Through Vensim, it was possible to develop, document, simulate and analyze the models, noting the environmental and social impact caused by the collection in the seven municipalities studied. Regarding the implementation in the Vensim simulator, historical data were used to verify the integration between the model component modules, as well as the results generated, since the outputs produced by the simulation model from real data provided to them were evaluated. The results were satisfactory and met the designers' expectations.
Downloads
References
Abed, K. A., El Morsi, A. K., Sayed, M. M., El Shaib, A. A., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian journal of petroleum, 27(4), 985-989. DOI: https://doi.org/10.1016/j.ejpe.2018.02.008
Aboelazayem, O., Gadalla, M., & Saha, B. (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy, 143, 77-90. DOI: https://doi.org/10.1016/j.renene.2019.04.106
Aghel, B., Mohadesi, M., Ansari, A., & Maleki, M. (2019). Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renewable Energy, 142, 207-214. DOI: https://doi.org/10.1016/j.renene.2019.04.100
Ahmad, N., Javed, F., Awan, J. A., Ali, S., Fazal, T., Hafeez, A., & Rehman, F. (2019). Biodiesel production intensification through microbubble mediated esterification. Fuel, 253, 25-31. DOI: https://doi.org/10.1016/j.fuel.2019.04.173
Amir-Heidari, P., Arneborg, L., Lindgren, J. F., Lindhe, A., Rosén, L., Raie, M., & Hassellöv, I. M. (2019). A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck. Environment international, 126, 309-320. DOI: https://doi.org/10.1016/j.envint.2019.02.037
Andrade, A. L., Seleme, A., Rodrigues L. H. Souto, R (2006). Pensamento Sistêmico: caderno de campo: o desafio da mudança sustentada nas organizações e na sociedade. Porto Alegre, Bookman.
ANP. (2015). Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Boletim Anual de Preços 2015: preços do petróleo, gás natural e combustíveis nos mercados nacional e internacional/ Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Rio de Janeiro: ANP. 164 p.: il. color., gráficos, tabelas. Disponível em: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletim-anual-de-precos. Acesso em jan 2022.
Anwar, M., Rasul, M. G., Ashwath, N., & Nabi, M. N. (2019). The potential of utilising papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia—A review. Energy Reports, 5, 280-297. DOI: https://doi.org/10.1016/j.egyr.2019.02.007
Ashok, A., Cusack, M., Saderne, V., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A., & Agustí, S. (2019). Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, 669, 205-212. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.437
Atabani, A. E., Shobana, S., Mohammed, M. N., Uğuz, G., Kumar, G., Arvindnarayan, S., & Ala'a, H. (2019). Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: Blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel, 244, 419-430. DOI: https://doi.org/10.1016/j.fuel.2019.01.169
Bechet, Q., Shilton, A., Fringer, O. B., Munoz, R., & Guieysse, B. (2010). Mechanistic modeling of broth temperature in outdoor photobioreactors. Environmental science & technology, 44(6), 2197-2203. DOI: https://doi.org/10.1021/es903214u
Bhatia, S. K., Bhatia, R. K., Jeon, J. M., Kumar, G., & Yang, Y. H. (2019). Carbon dioxide capture and bioenergy production using biological system–A review. Renewable and sustainable energy reviews, 110, 143-158. DOI: https://doi.org/10.1016/j.rser.2019.04.070
Bórawski, P., Bełdycka-Bórawska, A., Szymańska, E. J., Jankowski, K. J., Dubis, B., & Dunn, J. W. (2019). Development of renewable energy sources market and biofuels in The European Union. Journal of cleaner production, 228, 467-484. DOI: https://doi.org/10.1016/j.jclepro.2019.04.242
BRASIL. (2008). Lei nº 11.116, de 18 de maio de 2008. Diário Oficial da República Federativa do Brasil. Poder Executivo, Brasília, DF, 19 mai. 2008.
Chen, H., & Chen, W. (2019). Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China's building sector during the 13th Five-Year Plan period. Energy Policy, 131, 281-294. DOI: https://doi.org/10.1016/j.enpol.2019.04.047
Chrysikou, L. P., Dagonikou, V., Dimitriadis, A., & Bezergianni, S. (2019). Waste cooking oils exploitation targeting EU 2020 diesel fuel production: Environmental and economic benefits. Journal of Cleaner Production, 219, 566-575. DOI: https://doi.org/10.1016/j.jclepro.2019.01.211
Cruz, R. P., Ferreira, F. B., & Rodrigues, F. D. Á. (2017). Simulação e análise econômica da produção de biodiesel a partir de óleo de macaúba. DOI: 10.18540/2446941603032017533.
Demirbas, M. F. (2009). Biorefineries for biofuel upgrading: a critical review. Applied energy, 86, S151-S161. DOI: https://doi.org/10.1016/j.apenergy.2009.04.043
Dimitriou, P., Tsujimura, T., & Suzuki, Y. (2019). Adopting biodiesel as an indirect way to reduce the NOx emission of a hydrogen fumigated dual-fuel engine. Fuel, 244, 324-334. DOI: https://doi.org/10.1016/j.fuel.2019.02.010
Donato, V. (2008). Logística Verde. Rio de Janeiro: Ciência Moderna Ltda, 256 p.
Dyson, B., & Chang, N. B. (2005). Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste management, 25(7), 669-679. DOI: https://doi.org/10.1016/j.wasman.2004.10.005
Encinar, J. M., González, J. F., & Rodríguez-Reinares, A. (2007). Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel processing technology, 88(5), 513-522. DOI: https://doi.org/10.1016/j.fuproc.2007.01.002
Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. (2011). Biodiesel feasibility study: an evaluation of material compatibility; performance; emission and engine durability. Renewable and sustainable energy reviews, 15(2), 1314-1324. DOI: https://doi.org/10.1016/j.rser.2010.10.004
Felizardo, P., Correia, M. J. N., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste management, 26(5), 487-494. DOI: https://doi.org/10.1016/j.wasman.2005.02.025
Ferronato, N., Ragazzi, M., Portillo, M. A. G., Lizarazu, E. G. G., Viotti, P., & Torretta, V. (2019). How to improve recycling rate in developing big cities: An integrated approach for assessing municipal solid waste collection and treatment scenarios. Environmental Development, 29, 94-110. DOI: https://doi.org/10.1016/j.envdev.2019.01.002
Ford, A. (2009). Modeling theen vironment, Second Edition. Island Press.
Ηatzisymeon, M., Kamenopoulos, S., & Tsoutsos, T. (2019). Risk assessment of the life-cycle of the Used Cooking Oil-to-biodiesel supply chain. Journal of Cleaner Production, 217, 836-843. DOI: https://doi.org/10.1016/j.jclepro.2019.01.088
Kannengiesser, J., Sakaguchi-Söder, K., Mrukwia, T., Jager, J., & Schebek, L. (2016). Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels. Waste management, 47, 78-83. DOI: https://doi.org/10.1016/j.wasman.2015.05.030
Kum, V., Sharp, A., & Harnpornchai, N. (2005, July). A system dynamics study of solid waste recovery policies in Phnom Penh City. In The 23rd International Conference of the System Dynamics Society, Boston. Proceedings... Boston: SDS. Disponível em: http://www.dinamica-de-sistemas.com/paper/31_23.pdf. Acesso em Jan 2021.
Kumar, D., & Scheiter, S. (2019). Biome diversity in South Asia-How can we improve vegetation models to understand global change impact at regional level? Science of the Total Environment, 671, 1001-1016. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.251
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 28(4), 500-518. DOI: https://doi.org/10.1016/j.biotechadv.2010.03.002
Law, A.M. (2015). Simulation Modeling and Analysis. 5ed., McGraw-Hill.
Leite, R. C. D. C., & Leal, R. L. V. M. (2007). O biocombustível no Brasil. Revista Novos Estudos CEBRAP, (78), 15-21. Disponível em: https://www.scielo.br/j/nec/a/8FyQn8jGsFVfzGZyst4CWbc/?lang=pt. Acesso em Jan 2021.
Lu, Y., Wang, Q. G., Zhang, X., Qian, Y., & Qian, X. (2019). China's black carbon emission from fossil fuel consumption in 2015, 2020, and 2030. Atmospheric Environment, 212, 201-207. DOI: https://doi.org/10.1016/j.atmosenv.2019.04.032
Madheshiya, A. K., & Vedrtnam, A. (2018). Energy-exergy analysis of biodiesel fuels produced from waste cooking oil and mustard oil. Fuel, 214, 386-408. DOI: https://doi.org/10.1016/j.fuel.2017.11.060
Maia, R.R.S. (2015). Biodiesel no Brasil: análise de custo-benefício. Editora Appris, Curitiba, Paraná.
Mandotra, S. K., Ahluwalia, A. S., & Ramteke, P. W. (2019). Production of high-quality biodiesel by Scenedesmus abundans. In The Role of Microalgae in Wastewater Treatment (pp. 189-198). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-1586-2_14
Marcos-Martinez, R., Bryan, B. A., Schwabe, K. A., Connor, J. D., Law, E. A., Nolan, M., & Sánchez, J. J. (2019). Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem services, 37, 100935. DOI: https://doi.org/10.1016/j.ecoser.2019.100935
Martins, C., & Andrade Jr, P. P. (2014). Produção de biodiesel no Brasil: Estratégia de sustentabilidade social, econômica e ambiental. Sustainable Business International Journal, (40). DOI: https://doi.org/10.22409/sbijounal2014.i40.a10224
Mendes, P.A.S. (2015). Sustentabilidade na produção e uso do biodiesel. Curitiba. Appris.
Miranda, A. C., da Silva Filho, S. C., Tambourgi, E. B., CurveloSantana, J. C., Vanalle, R. M., & Guerhardt, F. (2018). Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil). Renewable and Sustainable Energy Reviews, 88, 373-379. DOI: https://doi.org/10.1016/j.rser.2018.02.028
Mittelbach, M., & Gangl, S. (2001). Long storage stability of biodiesel made from rapeseed and used frying oil. Journal of the American Oil Chemists' Society, 78(6), 573-577. DOI: https://doi.org/10.1007/s11746-001-0306-z
Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2019). Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy, 136, 677-682. DOI: https://doi.org/10.1016/j.renene.2019.01.039
Nabi, M. N., Rasul, M. G., Anwar, M., & Mullins, B. J. (2019). Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels. Renewable energy, 140, 647-657. DOI: https://doi.org/10.1016/j.renene.2019.03.066
Nijmeijer, A., Lauri, P. É., Harmand, J. M., & Saj, S. (2019). Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity. Agroforestry Systems, 93(3), 851-868. DOI: https://doi.org/10.1007/s10457-017-0182-6
Ranjan, A., Dawn, S. S., Jayaprabakar, J., Nirmala, N., Saikiran, K., & Sriram, S. S. (2018). Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel, 220, 780-791. DOI: https://doi.org/10.1016/j.fuel.2018.02.057
Reis, M. P. F. P.; Ellwanger, R. M.; Fleck, E. (2007). Destination of frying oils. Proceedings of the Brazilian Congress on Sanitary and Environmental Engineering, ABES.
Rodrigues, G. O., de Oliveira Simonetto, E., Ravanello, F., Beltrame, G., & Motke, F. D. (2016). SUSTENTABILIDADE NO USO DO BIODIESEL: modelagem computacional baseada em dinâmica de sistemas. Revista da Universidade Vale do Rio Verde, 14(1), 930-946. DOI: http://dx.doi.org/10.5892/ruvrd.v14i1.2749
Sahar, S. S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Habibur, R., & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 41: 220–226. DOI: https://doi.org/10.1016/j.scs.2018.05.037
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy policy, 37(1), 181-189. DOI: 10.1016/j.enpol.2008.08.016. DOI: https://doi.org/10.1016/j.enpol.2008.08.016
Shimabukuro, Y. E., Arai, E., Duarte, V., Jorge, A., Santos, E. G. D., Gasparini, K. A. C., & Dutra, A. C. (2019). Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon. International Journal of Remote Sensing, 40(14), 5475-5496. DOI: https://doi.org/10.1080/01431161.2019.1579943
Shomal, R., Hisham, H., Mlhem, A., Hassan, R., & Al-Zuhair, S. (2019). Simultaneous extraction–reaction process for biodiesel production from microalgae. Energy Reports, 5, 37-40. DOI: https://doi.org/10.1016/j.egyr.2018.11.003
Santos, M. X., & da Silva, J. G. F. (2016). Aproveitamento do óleo residual de fritura na produção de biodiesel Utilization of residual frying oil in biodiesel production. REMEA-Revista Eletrônica do Mestrado em Educação Ambiental, 33(1), 299-306. DOI: https://doi.org/10.14295/remea.v33i1.5111
Silva, E. C. P. (2006). O impacto da gestão do tamanho da força policial na taxa de violência em Curitiba: Uma abordagem qualitativa sob o referencial da dinâmica de sistemas. 2006 (Doctoral dissertation, Dissertação (Mestrado em Engenharia de Produção e Sistemas) – Pontifícia Universidade Católica do Paraná). Disponível em: https://www.biblioteca.pucpr.br/tede/tde_arquivos/9/TDE-2007-01-30T081953Z-490/Publico/Elaine%20PPGEPS.pdf Acesso em Jan 2021.
Simonetto, E. D. O. (2014). Simulation computer to evaluate scenarios of solid waste–an approach using systems dynamics. International Journal of Environment and Sustainable Development 8, 13(4), 339-353. Disponível em: https://www.inderscienceonline.com/doi/abs/10.1504/IJESD.2014.064960. Acesso em Jan 2021.
Sufian, M. A., & Bala, B. K. (2007). Modeling of urban solid waste management system: The case of Dhaka city. Waste Management, 27(7), 858-868. DOI: https://doi.org/10.1016/j.wasman.2006.04.011
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. DOI: https://doi.org/10.1016/j.apenergy.2012.11.061
Tan, Y. H., Abdullah, M. O., Kansedo, J., Mubarak, N. M., San Chan, Y., & Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable energy, 139, 696-706. DOI: https://doi.org/10.1016/j.renene.2019.02.110
Tavares, B.M.; Da Silva. S.R.R. (2008). Biodiesel: fonte de combustível limpo atuando como rica contribuição estratégica, social e ecológica na região de Lins, Monografia apresentada ao Centro Universitário Católico Salesiano Auxilium – UNISALESIANO, Lins-SP, para graduação em Administração.
Vedana. U, Usinas demais, produção de menos (2008). Disponível em: https://www.biodieselbr.com/revista/003/coluna-univaldo.htm. Acesso out de 2020.
Velmurugan, R., Mayakrishnan, J., Induja, S., Raja, S., Nandagopal, S., & Sathyamurthy, R. (2019). Comprehensive study on the effect of CuO nano fluids prepared using one-step chemical synthesis method on the behavior of waste cooking oil biodiesel in compression ignition engine. Journal of Thermal Science and Engineering Applications, 11(4). DOI: https://doi.org/10.1115/1.4041878
Vensim – Ventana Simulations (2016), Vensim simulation software. Disponível em: http://www.vensim.com, 2014. Acessado em Dez. 2021.
Vensim, Manual Vensim-PLE, Disponível em: http://www.vensim.com, 2004. Acessado em Dez. 2021.
Vidmantas, J. B., Tirlone, C. A., Bigatão, B. A., & França-Júnior, J. D. M. (2010). Estudo do destino de resíduos oleosos em estabelecimentos de comida rápida situados em shopping na cidade de Dourados/MS. III Simpósio Intercâmbio Brasil/Japão em Sustentabilidade: Um Desafio da Humanidade, Campo Grande, Mato Grosso.
Ye, X., Chen, B., Li, P., Jing, L., & Zeng, G. (2019). A simulation-based multi-agent particle swarm optimization approach for supporting dynamic decision making in marine oil spill responses. Ocean & Coastal Management, 172, 128-136. DOI: https://doi.org/10.1016/j.ocecoaman.2019.02.003
Zailani, S., Iranmanesh, M., Sean Hyun, S., & Ali, M. H. (2019). Applying the theory of consumption values to explain drivers’ willingness to pay for biofuels. Sustainability, 11(3), 668. Disponível em: https://www.mdpi.com/2071-1050/11/3/668. Acesso em Jan 2021.
Zhang, L., & Kong, S. C. (2010). Vaporization modeling of petroleum–biofuel drops using a hybrid multi-component approach. Combustion and Flame, 157(11), 2165-2174. DOI: https://doi.org/10.1016/j.combustflame.2010.05.011
Zhao, F., Liu, F., Liu, Z., & Hao, H. (2019). The correlated impacts of fuel consumption improvements and vehicle electrification on vehicle greenhouse gas emissions in China. Journal of Cleaner Production, 207, 702-716. DOI: https://doi.org/10.1016/j.jclepro.2018.10.046
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Exacta
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.