A hybrid non-dominated sorting genetic algorithm with local search for portfolio selection problem with cardinality constraints

Authors

DOI:

https://doi.org/10.5585/2023.22046

Keywords:

portfolio selection problem, cardinality constraints, genetic algorithm, multiobjective optimization

Abstract

The Cardinality-Constrained Portfolio Selection Problem (CCPSP) consists of allocating resources to a limited number of assets. In its classical form, it is represented as a multi-objective problem, which considers the expected return and the assumed risk in the portfolio. This problem is one of the most relevant subjects in finance and economics nowadays. In recent years, the consideration of cardinality constraints, which limit the number of assets in the portfolio, has received increased attention from researchers, mainly due to its importance in real-world decisions. In this context, this paper proposes a new hybrid heuristic approach, based on a Non-dominated Sorting Genetic Algorithm with Local Search structures, to solve PSP with cardinality constraints, aiming to overcome the challenge of achieving efficient solutions to the problem. The results demonstrated that the proposed algorithm achieved good quality results, outperforming other methods in the literature in several classic instances.

Downloads

Download data is not yet available.

Author Biographies

Yuri Laio Teixeira Veras Silva, Universidade Federal de Campina Grande / Campina Grande, PB - Brasil

Professor Adjunto na Unidade de Engenharia de Produção da Universidade Federal de Campina Grande. Tem experiência nas grandes áreas de Engenharia de Produção, especialmente em pesquisa operacional e simulação, gestão da produção, análise de investimentos, logística e cadeia de suprimentos, com foco na implementação de ferramentas de apoio à tomada de decisão, fundamentadas principalmente em abordagens de programação inteira mista, não-linear, modelos estocásticos, meta-heurísticas, inteligência artificial e abordagens de simulação computacional. Universidade Federal de Campina Grande / Campina Grande, PB - Brasil

Nathállya Etyenne Figueira Silva, Centro Universitário de João Pessoa / João Pessoa, PB - Brasil

Professora no Centro Universitário de João Pessoa, lotada no curso de Administração. Doutoranda em Administração pelo Programa de Pós-Graduação em Administração da Universidade Federal da Paraíba. Desenvolve pesquisas principalmente nas áreas de finanças, educação financeira e responsabilidade social corporativa

References

Akbay, M. A., Kalayci, C. B., & Polat, O. (2020). A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization. Knowledge-Based Systems, v.198, 105944. https://doi.org/10.1016/j.knosys.2020.105944

Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications, 38(11), 14208-14217. https://doi.org/10.1016/j.eswa.2011.04.233

Anagnostopoulos, K. P., & Mamanis, G. (2009). Finding the efficient frontier for a mixed integer portfolio choice problem using a multiobjective algorithm. Vol.1 N.2 (2009). http://dx.doi.org/10.4236/ib.2009.12013

Armananzas, R., & Lozano, J. A. (2005). A multiobjective approach to the portfolio optimization problem. In 2005 IEEE Congress on Evolutionary Computation (Vol. 2, pp. 1388-1395). IEEE. https://doi.org/10.1109/CEC.2005.1554852

Bacanin, N., & Tuba, M. (2014). Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/721521

Baykasoğlu, A., Yunusoglu, M. G., & Özsoydan, F. B. (2015). A GRASP based solution approach to solve cardinality constrained portfolio optimization problems. Computers & Industrial Engineering, 90, 339-351. https://doi.org/10.1016/j.cie.2015.10.009

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal of the operational research society, 41(11), 1069-1072. https://doi.org/10.1057/jors.1990.166

Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271-1302. https://doi.org/10.1016/S0305-0548(99)00074-X

Cui, T., Cheng, S., & Bai, R. (2014). A combinatorial algorithm for the cardinality constrained portfolio optimization problem. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 491-498). IEEE. https://doi.org/10.1109/CEC.2014.6900357

Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: Real world applications, 10(4), 2396-2406. https://doi.org/10.1016/j.nonrwa.2008.04.023

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017

Deng, G. F., Lin, W. T., & Lo, C. C. (2012). Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Systems with Applications, 39(4), 4558-4566. https://doi.org/10.1016/j.eswa.2011.09.129

Erfani, B., Ebrahimnejad, S., & Moosavi, A. (2020). An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 16(4), 1801.

http://dx.doi.org/10.3934/jimo.2019030

Fernández, A., & Gómez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research, 34(4), 1177-1191. https://doi.org/10.1016/j.cor.2005.06.017

Golmakani, H. R., & Fazel, M. (2011). Constrained portfolio selection using particle swarm optimization. Expert Systems with Applications, 38(7), 8327-8335. http://dx.doi.org/10.1016%2Fj.eswa.2011.01.020

Guo, Y., Chen, Z. R., Ruan, Y. L., & Zhang, J. (2012, October). Application of NSGA-II with local search to multi-dock cross-docking sheduling problem. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 779-784). IEEE. https://doi.org/10.1109/ICSMC.2012.6377822

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., & Prasath, V. B. (2019). Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information, 10(12), 390. https://doi.org/10.3390/info10120390

Huo, J., Liu, J., & Gao, H. (2021). An nsga-ii algorithm with adaptive local search for a new double-row model solution to a multi-floor hospital facility layout problem. Applied Sciences, 11(4), 1758. https://doi.org/10.3390/app11041758

Kalayci, C. B., Polat, O., & Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolutionary Computation, 54, 100662. https://doi.org/10.1016/j.swevo.2020.100662

Kalayci, C. B., Polat, O., & Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolutionary Computation, 54, 100662. https://doi.org/10.1016/j.swevo.2020.100662

Kartal, B. (2020). An artificial bee colony algorithm approach for cardinality constrained mean-variance model. Financial Service, 1.

Kaucic, M. (2019). Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization. Computers & Operations Research, 109, 300-316. https://doi.org/10.1016/j.cor.2019.05.014

Khan, A. T., Cao, X., & Li, S. (2022). Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints. Computational Economics, 1-23. https://doi.org/10.1007/s10614-022-10303-0

Khodamoradi, T., Salahi, M., & Najafi, A. R. (2021). Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate. Decisions in Economics and Finance, 44(1), 197-214. https://doi.org/10.1007/s10203-020-00293-9

Leung, M. F., Wang, J., & Che, H. (2022). Cardinality-constrained portfolio selection via two-timescale duplex neurodynamic optimization. Neural Networks, 153, 399-410. https://doi.org/10.1016/j.neunet.2022.06.023

Liagkouras, K., & Metaxiotis, K. (2014). A new probe guided mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274-6290. https://doi.org/10.1016/j.eswa.2014.03.051

Liagkouras, K., & Metaxiotis, K. (2018). A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem. Annals of Operations Research, 267(1), 281-319. https://doi.org/10.1007/s10479-016-2377-z

Ma, H., da Silva, A. S., & Kuang, W. (2019). NSGA-II with local search for multi-objective application deployment in multi-cloud. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 2800-2807). IEEE. https://doi.org/10.1109/CEC.2019.8790006

Markowitz, H. M. (1952). Portfolio Selection, 1959. Journal of Finance, v. 7, 77-91.

Mishra, S. K., Panda, G., & Majhi, R. (2014). A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection. Swarm and Evolutionary Computation, 16, 38-51. https://doi.org/10.1016/j.swevo.2014.01.001

Moral-Escudero, R., Ruiz-Torrubiano, R., & Suárez, A. (2006). Selection of optimal investment portfolios with cardinality constraints. In 2006 IEEE International Conference on Evolutionary Computation (pp. 2382-2388). IEEE. https://doi.org/10.1109/CEC.2006.1688603

Nguyen, P. T. M., Passow, B. N., & Yang, Y. (2016). Improving anytime behavior for traffic signal control optimization based on NSGA-II and local search. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 4611-4618). IEEE. https://doi.org/10.1109/IJCNN.2016.7727804

Pai, G. V., & Michel, T. (2009). Evolutionary optimization of constrained $ k $-means clustered assets for diversification in small portfolios. IEEE Transactions on Evolutionary Computation, 13(5), 1030-1053. https://doi.org/10.1109/TEVC.2009.2014360

Rasoulzadeh, M., Edalatpanah, S. A., Fallah, M., & Najafi, S. E. (2022). A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decision Making: Applications in Management and

Engineering, 5(2), 241-259. https://doi.org/10.31181/dmame0324062022e

Sabar, N. R., & Kendall, G. (2014). Using harmony search with multiple pitch adjustment operators for the portfolio selection problem. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 499-503). https://doi.org/10.1109/CEC.2014.6900384

Sadigh, A. N., Mokhtari, H., Iranpoor, M., & Ghomi, S. M. T. (2012). Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and hopfield neural network. Advanced Science Letters, 17(1), 11-20. https://doi.org/10.1166/asl.2012.3666

Salahi, M., Daemi, M., Lotfi, S., & Jamalian, A. (2014). PSO and harmony search algorithms for cardinality constrained portfolio optimization problem. AMO–Advanced Modeling and Optimization, 16(3), 559-573.

Sharpe, W. F. (1989). Mean-variance analysis in portfolio choice and capital markets. The Journal of Finance n. 44 (2), 531–535. https://doi.org/10.2307/2328607

Silva, Y. L. T., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. https://doi.org/10.1016/j.eswa.2019.05.018

Skolpadungket, P., Dahal, K., & Harnpornchai, N. (2007). Portfolio optimization using multi-obj ective genetic algorithms. In 2007 IEEE Congress on Evolutionary Computation (pp. 516-523). IEEE. https://doi.org/10.1109/CEC.2007.4424514

Strumberger, I., Tuba, E., Bacanin, N., Beko, M., & Tuba, M. (2018). Hybridized artificial bee colony algorithm for constrained portfolio optimization problem. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC.2018.8477732

Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2), 125-147. https://doi.org/10.1162/106365600568158

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. https://doi.org/10.1016/j.ejor.2011.03.030

Xiong, J., Wang, R., Kou, G., & Xu, L. (2021). Solving Periodic Investment Portfolio Selection Problems by a Data-Assisted Multiobjective Evolutionary Approach. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3108977

Xu, R. T., Zhang, J., Liu, O., & Huang, R. Z. (2010). An estimation of distribution algorithm based portfolio selection approach. In 2010 International conference on technologies and applications of artificial intelligence (pp. 305-313). IEEE. https://doi.org/10.1109/TAAI.2010.57

Zhao, H., Chen, Z. G., Zhan, Z. H., Kwong, S., & Zhang, J. (2021). Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem. Neurocomputing, 430, 58-70.

https://doi.org/10.1016/j.neucom.2020.12.022

Zhao, Z. Y., Liu, S. X., & Zhou, M. C. (2020). A New Bi-Objective Batch Scheduling Problem: NSGA-II-and-Local-Search-Based Memetic Algorithms. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2119-2124). IEEE.

https://doi.org/10.1109/SMC42975.2020.9283072

Zhao, Z., Liu, B., Zhang, C., & Liu, H. (2019). An improved adaptive NSGA-II with multi-population algorithm. Applied Intelligence, 49(2), 569-580. https://doi.org/10.1007/s10489-018-1263-6

Downloads

Published

2023-03-08

How to Cite

Silva, Y. L. T. V., & Silva, N. E. F. (2023). A hybrid non-dominated sorting genetic algorithm with local search for portfolio selection problem with cardinality constraints. Exacta, 22(3), 788–819. https://doi.org/10.5585/2023.22046

Most read articles by the same author(s)