Análisis de incumplimiento en un programa de fan socio: el uso de la puntuación de crédito como herramienta de gestión deportiva
DOI:
https://doi.org/10.5585/podium.v11i1.20124Palabras clave:
Programa de fidelización, Fan socio, Fútbol, Incumplimiento, pontuación de crédito.Resumen
Objetivo del estudio: Los programas de fidelización de aficionados son ejemplos de cómo los clubes han adaptado herramientas exitosas del mundo empresarial para impulsar sus marcas, con el objetivo de ofrecer una alternativa de ingresos perenne. Sin embargo, el entorno de apasionada volatilidad de la afición se convierte en un desafío en la gestión deportiva. Por lo tanto, el objetivo del trabajo es implementar una metodología de Credit Scoring para evaluar el comportamiento moroso en un programa de socios.
Metodología/enfoque: El Credit Scoring se ha difundido tradicionalmente en las instituciones bancarias para estudiar el comportamiento de incumplimiento de los clientes, utilizando perfiles de registro y relación para asignar puntajes que miden el riesgo de incumplimiento.
Originalidad/relevancia: Comprender el comportamiento del aficionado es fundamental para que el gerente implemente medidas promocionales que tengan como objetivo aumentar la lealtad del cliente.
Principales resultados: Los resultados muestran que los miembros con categorías de plan más caros, edades más avanzadas, la misma ciudad donde se juegan los partidos y la proximidad al estadio, reducen significativamente sus posibilidades de incumplimiento. Incluso en el caso de un entorno mayoritariamente masculino, el género femenino se presenta como un perfil con menor probabilidad de incumplimiento. El hecho de que el titular de la cuenta del socio tenga dependientes dependientes reduce la probabilidad de incumplimiento, en contraste con la literatura de calificación crediticia bancaria, donde el número de dependientes aumenta la probabilidad de incumplimiento.
Aportes teórico/metodológicos: El trabajo utiliza técnicas de georreferenciación para calcular la distancia de cada socio al estadio y utiliza una técnica de estimación de Credit Scoring en dos etapas, basada en perfiles activos e inactivos.
Descargas
Citas
Albuquerque, P. H. M., Medina, F. A. S., & Silva, A. R. D. (2017). Regressão Logística Geograficamente Ponderada Aplicada a Modelos de Credit Scoring. Revista Contabilidade & Finanças, 28, 93-112.: https://doi.org/10.1590/1808-057x201703760
Azevedo, A. G. D. (2013). O desenvolvimento de estratégia do programa Sócio-torcedor relacionado com a visão Gerencial do futebol profissional no Distrito Federal. (Dissertação de mestrado, Universidade de Brasília). https://repositorio.unb.br/handle/10482/14362
Bandarra, T. M. D. S. (2017). Sport Club Internacional: uma análise de seus torcedores com uma abordagem de CRM. (Trabalho de conclusão de curso, Universidade Federal do Rio Grande do Sul). https://www.lume.ufrgs.br/handle/10183/170502
Biscaia, R., Ross, S., Yoshida, M., Correia, A., Rosado, A., & Marôco, J. (2016). Investigating the role of fan club membership on perceptions of team brand equity in football. Sport Management Review, 19(2), 157-170. https://doi.org/10.1016/j.smr.2015.02.001
Bücker, M., van Kampen, M., & Krämer, W. (2013). Reject inference in consumer credit scoring with nonignorable missing data. Journal of Banking & Finance, 37(3), 1040-1045. https://doi.org/10.1016/j.jbankfin.2012.11.002
Carvalho, W. G., Molletta, S. R., Stinghen, F. M., & Knaut, C. M. F. (2013). Estudo sobre a satisfação do sócio-torcedor do Paraná Clube. Revista Intercontinental de Gestão Desportiva, 3. https://doi.org/10.51995/2237-3373.v11i1e110011
Chen, M. C., & Huang, S. H. (2003). Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert Systems with Applications, 24(4), 433-441. https://doi.org/10.1016/S0957-4174(02)00191-4
Cunha, Michele Aparecida. (2021). Finanças e Regionalidade: um modelo de Credit Scoring com uso da Regressão Logística Geograficamente Ponderada no Programa Minha Casa Minha Vida em Minas Gerais. 2021. 95 f. Dissertação (Mestrado em Administração) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2021.73
DeSarbo, W. S. (2010). A spatial multidimensional unfolding choice model for examining the heterogeneous expressions of sports fan avidity. Journal of Quantitative Analysis in Sports, 6(2). https://doi.org/10.2202/1559-0410.1232
Derbaix, C., & Decrop, A. (2011). Colours and scarves: an ethnographic account of football fans and their paraphernalia. Leisure Studies, 30(3), 271-291. https://doi.org/10.1080/02614367.2010.527356
Dinh, T. H. T., & Kleimeier, S. (2007). A credit scoring model for Vietnam's retail banking market. International Review of Financial Analysis, 16(5), 471-495. https://doi.org/10.1016/j.irfa.2007.06.001
Fleury, F. A., Brashear-Alejandro, T., & Feldmann, P. R. (2014). Considerações teóricas acerca do composto de marketing esportivo. PODIUM Sport, Leisure and Tourism Review, 3(1), 01-11. https://doi.org/10.5585/podium.v3i1.82
Gomes, E. F. C. (2014). O que se pode extrair da média de público histórica do clube. Almanaque do Ferrão. https://almanaquedoferrao.net/2014/11/26/o-que-se-pode-extrair-da-media-de-publico-historica-do-ferrao/
Greene, W. (1998). Sample selection in credit-scoring models. Japan and the world economy, 10(3), 299-316. https://doi.org/10.1016/S0922-1425(98)00030-9
Greene, W. H. (2003). Econometric analysis. Pearson Education India.
Hamil, S., Walters, G., & Watson, L. (2013). The model of governance at FC Barcelona: balancing member democracy, commercial strategy, corporate social responsibility and sporting performance. Who Owns Football? 143-172. Routledge. https://doi.org/10.1080/14660971003780446
Khemais, Z., Nesrine, D., & Mohamed, M. (2016). Credit scoring and default risk prediction: A comparative study between discriminant analysis & logistic regression. International Journal of Economics and Finance, 8(4), 39. https://doi.org/10.5539/ijef.v8n4p39
Leal, D. (2011). Vasco luta contra inadimplência de 83% dos sócios. Portal Lance. https://www.lance.com.br/todos-esportes/vasco-luta-inadimplencia-socios.html
Lei nº 9.615, de 24 março de 1998. Institui normas gerais sobre desporto e dá outras providências. http://www.planalto.gov.br/ccivil_03/leis/l9615consol.htm
Lei nº 10.671, de 15 de maio de 2003. Dispõe sobre o Estatuto de Defesa do Torcedor e dá outras providências. http://www.planalto.gov.br/ccivil_03/leis/2003/l10.671.htm
Li, Z., Tian, Y., Li, K., Zhou, F., & Yang, W. (2017). Reject inference in credit scoring using semi-supervised support vector machines. Expert Systems with Applications, 74, 105-114. https://doi.org/10.1016/j.eswa.2017.01.011
Llopis-Goig, R. (2012). From “socios” to “hyper-consumers”: an empirical examination of the impact of commodification on Spanish football fans. Soccer & Society, 13(3), 392-408. https://doi.org/10.1080/14660970.2012.655508
Macri, M. (2011). Pasión y gestión: Claves del ciclo Macri en Boca. Aguilar.
Moreira, M. V., & Hijós, N. (2013). Clubes deportivos, fútbol y mercantilización: los casos de Boca Juniors e Independiente en la Argentina. Question, 1(37), 149-162. https://www.perio.unlp.edu.ar/ojs/index.php/question/article/view/1728/1473
Mulheres são menos inadimplentes do que homens. (2016). Consumidor Moderno. https://www.consumidormoderno.com.br/2016/03/08/mulheres-sao-menos-inadimplentes-do-que-homens/
Pereira, G. H. D. A. (2004). Modelos de risco de crédito de clientes: Uma aplicação a dados reais. (Dissertação de doutorado, Universidade de São Paulo). https://doi.org/10.11606/D.45.2004.tde-28122004-224257
Ribeiro, L. C. (2012). Futebol: por uma história política da paixão nacional. História: Questões & Debates, 57(2). http://dx.doi.org/10.5380/his.v57i2.30570
Rosolino, T. (2020). As dívidas dos times brasileiros: veja ranking com balanço dos maiores clubes. Portal Terra. https://www.goal.com/br/not%C3%ADcias/as-dividas-dos-times-brasileiros-veja-ranking-com-balanco/14a81mxtoco6i1irhwp9kec53x
Silva Leal, G., Furin, L. M., Conejero, M. A., André, P., & Bougleux, V. (2017) Programas Sócio-Torcedor no Brasil-Análise comparativa entre clubes selecionados e o Volta Redonda Futebol Clube. Revista Gestão e Negócios do Esporte.
Souza Dias, P., Monteiro, P. R. R., & Ribeiro, E. M. S. (2019). Aplicação de Redes Bayesianas para análise de programas sócio torcedor. Revista Pensamento Contemporâneo em Administração, 13(2), 49-66. https://doi.org/10.12712/rpca.v13i2.27526
Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International journal of forecasting, 16(2), 149-172. https://doi.org/10.1016/S0169-2070(00)00034-0
Umbelino, W. L., Silva, R. B., Ponte, V. M. R., & Lima, M. C. (2019). Disclosure em Clubes de Futebol: Estudo sobre os Reflexos da Lei do PROFUT. Revista Evidenciação Contábil & Finanças, 7(1), 112-132. https://doi.org/10.22478/ufpb.2318-1001.2019v7n1.38074
Xavier, F. (2010). O Programa “Sócio-Torcedor” do Sport Club Internacional. Aurora. Revista de Arte, Mídia e Política, (9), 128-138. https://revistas.pucsp.br/aurora/article/view/3788
Yang S, Yu SL(K), Bruwer J. (2017) The effectof relational benefits in loyalty programmes: Evidence from Chinese milk formula customer clubs. J Consumer Behav.2018;1–10. https://doi.org/10.1002/cb.1705
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 PODIUM Sport, Leisure and Tourism Review
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.