Uma abordagem de decomposição para resolução de um problema de produção, inventário, distribuição e roteirização

Autores

DOI:

https://doi.org/10.5585/exactaep.2021.11398

Palavras-chave:

PIDRP, VRP, IRP, PLIM, Cadeia de suprimentos.

Resumo

O objetivo deste estudo é desenvolver uma solução para o problema de distribuição proposto pelos jogos matemáticos de 2017-2018, organizado conjuntamente pela Federação Francesa de Jogos Matemáticos e Empresa de Modelagem Matemática. Conhecido na literatura como um problema de produção-estoque-distribuição-roteamento (PIDRP), este é um problema de otimização combinatória NP-difícil, ainda pouco explorado na literatura. Esta pesquisa é baseada em modelos quantitativos e combina métodos exatos e heurísticos para propor uma abordagem de resolução de múltiplas fases para o PIDRP. Os resultados mostram que o uso de clusters respeita aspectos operacionais práticos e oferece boas soluções para o PIDRP no planejamento de curto e longo prazo. A contribuição teórica deste estudo está na estratégia de modelagem do PIDRP, e a contribuição prática consiste na solução de um PIDRP real baseado em técnicas de otimização.

Downloads

Não há dados estatísticos.

Biografia do Autor

William de Paula Ferreira, Federal Institute of Education, Science and Technology of Sao Paulo (IFSP)

PhD student at Polytechnique Montréal (Canada). MSc. in Industrial Engineering by Tallinn University of Technology - TUT (Estonia) and by Royal Institute of Technology - KTH (Sweden). Spec. in Industrial Management by Pontifical Catholic University of Minas Gerais (Brazil). BSc. in Industrial Engineering by Engineering Faculty of Minas Gerais (Brazil). Technician in Electronics by Federal Center for Technological Education of Minas Gerais (Brazil).

Leonardo Carlos da Cruz, Federal University of Minas Gerais (UFMG)

Possui graduação em Engenharia Eletrônica e de Telecomunicações pela Pontifícia Universidade Católica de Minas Gerais (2002), graduação em Matemática Computacional pela Universidade Federal de Minas Gerais (2010) e mestrado em Modelagem Matemática e Computacional pelo Centro Federal de Educação Tecnológica de Minas Gerais (2013). Tem experiência na área de Ciência da Computação, com ênfase em Matemática da Computação.

Michael David de Souza Dutra, Polytechnique Montréal

Atualmente é técnico judiciario - Tribunal Regional do Trabalho da 3ª Região. Tem experiência na área de Engenharia de Produção, com ênfase em Pesquisa Operacional. Competências: Linguagens: Pascal, C/C++, AMPL, SQL, Java, CPLEX, GLPK, APIWin32 Metodologias: UML. Ferramentas: Eclipse, NetBeans, MS Project, RAD Studio, Visual Basic, AutoCAD, SolidWorks. SGBD: MySQL, Talend Open Studio, BIRT. Sistemas Operacionais: Android, Windows, GNU/Linux (Mint, Ubuntu). Sistemas de gestão: Planejamento de operações, Segurança do trabalho. Pesquisa Operacional: Modelagem de sistemas de produção, simulação de sistemas complexos, otimização de sistemas em programação linear e não-linear heurísticas e metaheurísticas, multicritério, algoritmos de suporte à decisão. 

Referências

Bard, J. F., & Nananukul, N. (2008). The integrated production–inventory–distribution–routing problem. Journal of Scheduling, 12(3), 257–280.

Beasley, J. E. (1984). Fixed routes. Journal of the Operational Research Society, 35(1), 49–55. https://doi.org/https://doi.org/10.1057/palgravejors.2601357.

Beauzamy, B. (2018a). Comments: Mathematical Competitive Game 2017-2018. French Federation of Mathematical Games and Mathematical Modelling Company, Corp. Retrieved from http://www.scmsa.eu/archives/SCM_FFJM_Competitive_Game_2017_2018_comments.pdf.

Beauzamy, B. (2018b). Mathematical Competitive Game 2017-2018 : Distribution of goods. French Federation of Mathematical Games and Mathematical Modelling Company, Corp. Retrieved from http://www.ffjm.org/upload/fichiers/ConcoursSCM/SCM_FFJM_Competitive_Game_2017_2018.pdf.

Belfiore, P. P., Costa, O. L. do V., & Fávero, L. P. L. (2006). Problema de estoque e roteirização: revisão bibliográfica. Production, 16(3), 442–454. https://doi.org/10.1590/S0103-65132006000300007.

Bertazzi, L., & Speranza, M. G. (2016). Matheuristics for Inventory Routing Problems. In Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions (pp. 1–14). IGI Global. https://doi.org/https://doi.org/10.4018/978-1-61350-086-6.ch001.

Bertrand, J. W. M., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241–264. https://doi.org/10.1108/01443570210414338.

Campbell, A., Clarke, L., Kleywegt, A., & Savelsbergh, M. (1998). The inventory routing problem. In Fleet management and logistics (pp. 95–113). Springer. https://doi.org/https://doi.org/10.1007/978-1-4615-5755-5_4.

Campbell, A., & Savelsbergh, M. (2004). A decomposition approach for the inventory-routing problem. Transportation Science, 38(4), 488–502.

Chandra, P., & Fisher, M. L. (1994). Theory and Methodology Coordination of production and distribution planning *. European Journal of Operational Research, 72(3), 503–517. https://doi.org/https://doi.org/10.1016/0377-2217(94)90419-7.

Coelho, L. C., Cordeau, J., & Laporte, G. (2014). Thirty Years of Inventory Routing. Transportation Science, 48(1), 1–19. https://doi.org/https://doi.org/10.1287/trsc.2013.0472.

Cordeiro, J. C. A., da Silva, S. M., da Silva, A. M., & Ferreira, W. P. (2019). Estratégia híbrida de produção em sistemas make to stock (MTS) e make to order (MTO) com otimização multiobjetivo. Produto & Produção, 19(1), 1–13. https://doi.org/10.22456/1983-8026.71739.

CSCMP. (2019). Supply Chain Management Definitions and Glossary. Retrieved October 14, 2019, from https://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx?hkey=60879588-f65f-4ab5-8c4b-6878815ef921.

de Assis, G., Ferreira, W. P., de Assis, J. R., Bueno, R. C., & de Souza, S. (2016). A hybrid metaheuristic approach based on GRASP and Simulated Annealing for the minimum latency problem. In Simpósio de Engenharia de Produção. Bauru, SP.: SIMPEP.

de Oliveira, C. A. S., Ferreira, W. de P., Mendes, R. C., de Assis, G., & Souza, M. J. F. (2017). Metaheuristic ILS with path relinking for the number partitioning problem. Independent Journal of Management & Production, 8(5), 767–779. https://doi.org/10.14807/ijmp.v8i5.597.

de Souza Leite, M., Santos, S. C., da Silva, A. M., & de Paula Ferreira, W. (2017). Eficácia da heurística da utilização incremental para balanceamento de linha: estudo de caso em um processo de tratamento de superfície. Produção Online, 17(3), 781–803. https://doi.org/https://doi.org/10.14488/1676-1901.v17i3.2495.

Doerner, K. F., & Schmid, V. (2010). Survey : Matheuristics for Rich Vehicle Routing Problems. In In International Workshop on Hybrid Metaheuristics (pp. 206–207). Berlin, Heidelberg.: Springer. https://doi.org/https://doi.org/10.1007/978-3-642-16054-7_15.

Frankel, R., Bolumole, Y. A., Eltantawy, R. A., Paulraj, A., & Gundlach, G. T. (2008). The domain and scope of SCM’s foundational disciplines—insights and issues to advance research. Journal of Business Logistics, 29(1), 1–30. https://doi.org/10.1002/j.2158-1592.2008.tb00066.x.

Glock, C. H., Grosse, E. H., & Ries, J. M. (2014). The lot sizing problem: A tertiary study. International Journal of Production Economics, 155, 39–51. https://doi.org/10.1016/j.ijpe.2013.12.009.

Kaganski, S., Majak, J., Karjust, K., & Toompalu, S. (2017). Implementation of Key Performance Indicators Selection Model as Part of the Enterprise Analysis Model. Procedia CIRP, 63, 283–288. https://doi.org/https://doi.org/10.1016/j.procir.2017.03.143.

Labadie, N., Prins, C., & Prodhon, C. (2016). Metaheuristics for Vehicle Routing Problems. John Wiley & Sons. https://doi.org/https://doi.org/10.1002/9781119136767.

Lei, L., Liu, S., Ruszczynski, A., & Park, S. (2006). On the integrated production , inventory , and distribution routing problem. IIE Transactions, 38(11), 955–970. https://doi.org/https://doi.org/10.1080/07408170600862688.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326–329. https://doi.org/https://doi.org/10.1145/321043.321046.

Miranda, P. L., Cordeau, J., Ferreira, D., Jans, R., & Morabito, R. (2018). Computers and Operations Research A decomposition heuristic for a rich production routing problem. Computers and Operations Research, 98, 211–230. https://doi.org/https://doi.org/10.1016/j.cor.2018.05.004.

Miranda, P. L., Morabito, R., & Ferreira, D. (2017). Optimization model for a production , inventory , distribution and routing problem in small furniture companies. TOP, 26(1), 30–67. https://doi.org/https://doi.org/10.1007/s11750-017-0448-1.

Moin, N. H., & Salhi, S. (2007). Inventory routing problems: a logistical overview. Journal of the Operational Research Society, 58(9), 1185–1194. https://doi.org/https://doi.org/10.1057/palgrave.jors.2602264.

Mostafa, N. A., & Eltawil, A. B. (2015). The production-inventory-distribution-routing problem: An integrated formulation and solution framework. IEOM 2015 - 5th International Conference on Industrial Engineering and Operations Management, 1–10. https://doi.org/https://doi.org/10.1109/IEOM.2015.7093751.

Park, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205–1224. https://doi.org/https://doi.org/10.1080/00207540412331327718.

Telo, L. R. A., da Silva, R. M., da Silva, A. M., Zampini, E. D. F., & de Paula, W. F. (2017). Proposição de sequenciamento da produção com uso do tempo de preparação. South American Development Society Journal, 3(08), 19. https://doi.org/10.24325/issn.2446-5763.v3i8p29-49.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., & Velasco, N. (2013). Discrete Optimization A matheuristic for the truck and trailer routing problem q. European Journal of Operational Research, 230(2), 231–244. https://doi.org/10.1016/j.ejor.2013.04.026.

Williams, B. D., & Tokar, T. (2008). A review of inventory management research in major logistics journals: Themes and future directions. The International Journal of Logistics Management, 19(2), 212–232. https://doi.org/10.1108/09574090810895960.

Downloads

Publicado

10.06.2021

Como Citar

Ferreira, W. de P., Cruz, L. C. da, & Dutra, M. D. de S. (2021). Uma abordagem de decomposição para resolução de um problema de produção, inventário, distribuição e roteirização. Exacta, 19(2), 351–373. https://doi.org/10.5585/exactaep.2021.11398

Edição

Seção

Artigos