Internet das coisas em sistemas logísticos: revisão da literatura recente e perspectivas de pesquisa
DOI:
https://doi.org/10.5585/exactaep.2021.15999Palavras-chave:
Sistemas logísticos, Indústria 4.0, Internet das Coisas (IoT), Revisão sistemática de literatura.Resumo
Este artigo tem como objetivo apresentar perspectivas para aplicação de tecnologias IoT em sistemas logísticos cobrindo aspectos teóricos e práticos da área de pesquisa, além de fornecer um portfólio bibliográfico atualizado de estudos que relacionam a temática. Foi realizada uma Revisão Sistemática de Literatura objetivando identificar as principais características da área de investigação e de agrupar os estudos teóricos e as perspectivas práticas analisadas. Como resultados, a análise bibliométrica evidenciou o crescimento da área de pesquisa e das revistas científicas mais importantes que publicam conteúdo relacionado a plataformas baseadas em IoT em contextos logísticos. Na análise de conteúdo, as perspectivas são agrupadas em: (i) proposições e requisitos conceituais, (ii) novos métodos e modelos de apoio à tomada de decisão, (iii) desenvolvimento de abordagens de base tecnológica e (iv) estudos empíricos. Como conclusão, é apresentado a descrição de direções para perspectivas futuras, tanto do ponto de vista científico quanto do ponto de vista prático.
Downloads
Referências
Accorsi, R., Cholette, S., Manzini, R., & Tufano, A. (12 de 2018). A hierarchical data architecture for sustainable food supply chain management and planning. Journal of Cleaner Production, 203, 1039-1054. https://doi.org/10.1016/j.jclepro.2018.08.275.
Aria, M., & Cuccurullo, C. (11 de 2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11, 959-975. https://doi.org/doi:10.1016/j.joi.2017.08.007.
Aryal, A., Liao, Y., Nattuthurai, P., & Li, B. (12 de 2018). The emerging big data analytics and IoT in supply chain management: a systematic review. Supply Chain Management: An International Journal. https://doi.org/10.1108/scm-03-2018-0149.
Avventuroso, G., Silvestri, M., & Frazzon, E. M. (2018). Additive Manufacturing Plant for Large Scale Production of Medical Devices: A Simulation Study. IFAC-PapersOnLine, 51, 1442-1447. https://doi.org/10.1016/j.ifacol.2018.08.312.
Chandra, A. A., & Lee, S. R. (10 de 2014). A Method of WSN and Sensor Cloud System to Monitor Cold Chain Logistics as Part of the IoT Technology. International Journal of Multimedia and Ubiquitous Engineering, 9, 145-152. https://doi.org/10.14257/ijmue.2014.9.10.15.
Chen, S.-L., Chen, Y.-Y., & Hsu, C. (3 de 2014). A New Approach to Integrate Internet-of-Things and Software-as-a-Service Model for Logistic Systems: A Case Study. Sensors, 14, 6144-6164. https://doi.org/10.3390/s140406144.
Chen, Y., Zhao, S., & Zhai, Y. (2014). Construction of intelligent logistics system by RFID of internet of things based on cloud computing. Journal of Chemical and Pharmaceutical Research, 6, 1676-1679.
Cho, S., & Kim, J. (3 de 2017). Smart Logistics Model on Internet of Things Environment. Advanced Science Letters, 23, 1599-1602. https://doi.org/10.1166/asl.2017.8604.
Chuang, C.-H., Lee, D.-H., Chang, W.-J., Weng, W.-C., Shaikh, M. O., & Huang, C.-L. (4 de 2017). Real-Time Monitoring via Patch-Type Piezoelectric Force Sensors for Internet of Things Based Logistics. IEEE Sensors Journal, 17, 2498-2506. https://doi.org/10.1109/jsen.2017.2665653.
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (1 de 2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5, 146-166. https://doi.org/10.1016/j.joi.2010.10.002.
Frazzon, E. M., Kück, M., & Freitag, M. (2018). Data-driven production control for complex and dynamic manufacturing systems. CIRP Annals, 67, 515-518. https://doi.org/10.1016/j.cirp.2018.04.033.
Fruchterman, T. M., & Reingold, E. M. (11 de 1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129-1164. https://doi.org/10.1002/spe.4380211102.
Guerrero-Bote, V. P., & Moya-Anegón, F. (10 de 2012). A further step forward in measuring journals' scientific prestige: The SJR2 indicator. Journal of Informetrics, 6, 674-688. https://doi.org/10.1016/j.joi.2012.07.001.
Guo, Y., & Qu, J. (8 de 2015). Study on Intelligent Logistics Management Information System Based on IOT and Cloud Computation in Big Data Era. The Open Cybernetics & Systemics Journal, 9, 934-941. https://doi.org/10.2174/1874110x01509010934.
Guo, Z., Zhang, Y., Zhao, X., & Song, X. (3 de 2017). A Timed Colored Petri Net Simulation-Based Self-Adaptive Collaboration Method for Production-Logistics Systems. Applied Sciences, 7, 235. https://doi.org/10.3390/app7030235.
Haq, A., & Kannan, G. (2006). Effect of forecasting on the multi-echelon distribution inventory supply chain cost using neural network, genetic algorithm and particle swarm optimisation. International Journal of Services Operations and Informatics, 1, 1-22. https://doi.org/10.1504/IJSOI.2006.010186.
He, W., & Chu, X. (2 de 2014). A Novel Navigation Information Management System for Food Maritime Logistics Based on Internet of Things. Advance Journal of Food Science and Technology, 6, 280-283. https://doi.org/10.19026/ajfst.6.25.
Heger, J., Grundstein, S., & Freitag, M. (11 de 2017). Online-scheduling using past and real-time data. An assessment by discrete event simulation using exponential smoothing. CIRP Journal of Manufacturing Science and Technology, 19, 158-163. https://doi.org/10.1016/j.cirpj.2017.07.003.
Hopkins, J., & Hawking, P. (5 de 2018). Big Data Analytics and IoT in logistics: a case study. The International Journal of Logistics Management, 29, 575-591. https://doi.org/10.1108/ijlm-05-2017-0109.
Hu, M., Huang, F., Hou, H., Chen, Y., & Bulysheva, L. (4 de 2016). Customized logistics service and online shoppers' satisfaction: an empirical study. (P. S. Professor Pan Wang, Ed.) Internet Research, 26, 484-497. https://doi.org/10.1108/intr-11-2014-0295.
Kang, Y.-S., Park, I.-H., & Youm, S. (12 de 2016). Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains. Sensors, 16, 2126. https://doi.org/10.3390/s16122126.
Kim, J.-S., Lee, H.-J., & Oh, R.-D. (5 de 2015). Smart Integrated Multiple Tracking System development for IOT based Target-oriented Logistics Location and Resource Service. International Journal of Smart Home, 9, 195-204. https://doi.org/10.14257/ijsh.2015.9.5.19.
Kong, X. T., Fang, J., Luo, H., & Huang, G. Q. (6 de 2015). Cloud-enabled real-time platform for adaptive planning and control in auction logistics center. Computers & Industrial Engineering, 84, 79-90. https://doi.org/10.1016/j.cie.2014.11.005.
Lee, C. K., Lv, Y., Ng, K. K., Ho, W., & Choy, K. L. (10 de 2017). Design and application of Internet of things-based warehouse management system for smart logistics. International Journal of Production Research, 56, 2753-2768. https://doi.org/10.1080/00207543.2017.1394592.
Lee, J., Bagheri, B., & Kao, H.-A. (1 de 2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. https://doi.org/10.1016/j.mfglet.2014.12.001.
Lee, Y. H., Jung, J. W., Eum, S. C., Park, S. M., & Nam, H. K. (2006). Production quantity allocation for order fulfilment in the supply chain: a neural network based approach. Production Planning and Control, 17, 378-389. https://doi.org/10.1080/09537280600621909.
Leusin, M., Frazzon, E., Maldonado, M. U., Kück, M., & Freitag, M. (11 de 2018). Solving the Job-Shop Scheduling Problem in the Industry 4.0 Era. Technologies, 6, 107. https://doi.org/10.3390/technologies6040107.
Li, Y. N., Peng, Y. L., Zhang, L., Wei, J. F., & Li, D. (12 de 2015). Quality monitoring traceability platform of agriculture products cold chain logistics based on the internet of things. Chemical Engineering Transactions, 46, 517-522. https://doi.org/10.3303/CET1546087.
Lima-Junior, F. R., & Carpinetti, L. C. (6 de 2019). Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks. International Journal of Production Economics, 212, 19-38. https://doi.org/10.1016/j.ijpe.2019.02.001.
Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (8 de 2018). Machine learning for internet of things data analysis: a survey. Digital Communications and Networks, 4, 161-175. https://doi.org/10.1016/j.dcan.2017.10.002.
Maslarić, M., Nikoličić, S., & Mirčetić, D. (11 de 2016). Logistics Response to the Industry 4.0: the Physical Internet. Open Engineering, 6. https://doi.org/10.1515/eng-2016-0073.
Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer o., Schuh G., Sihn W., Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65, 621-641. https://doi.org/10.1016/j.cirp.2016.06.005.
Papert, M., Rimpler, P., & Pflaum, A. (10 de 2016). Enhancing supply chain visibility in a pharmaceutical supply chain. International Journal of Physical Distribution & Logistics Management, 46, 859-884. https://doi.org/10.1108/ijpdlm-06-2016-0151.
Peres, F. A., & Fogliatto, F. S. (1 de 2018). Variable selection methods in multivariate statistical process control: A systematic literature review. Computers & Industrial Engineering, 115, 603-619. https://doi.org/10.1016/j.cie.2017.12.006.
Qiu, X., Luo, H., Xu, G., Zhong, R., & Huang, G. Q. (1 de 2015). Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). International Journal of Production Economics, 159, 4-15. https://doi.org/10.1016/j.ijpe.2014.09.001.
Qu, T., Lei, S. P., Wang, Z. Z., Nie, D. X., Chen, X., & Huang, G. Q. (5 de 2016). IoT-based real-time production logistics synchronization system under smart cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 84, 147-164. https://doi.org/10.1007/s00170-015-7220-1.
Qu, T., Thürer, M., Wang, J., Wang, Z., Fu, H., Li, C., & Huang, G. Q. (4 de 2017). System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research, 55, 2622-2649. https://doi.org/10.1080/00207543.2016.1173738.
R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Fonte: https://www.R-project.org/.
Ray, P. P. (12 de 2016). A survey of IoT cloud platforms. Future Computing and Informatics Journal, 1, 35-46. https://doi.org/10.1016/j.fcij.2017.02.001.
Silva, N., Ferreira, L. M., Silva, C., Magalhães, V., & Neto, P. (2017). Improving Supply Chain Visibility With Artificial Neural Networks. Procedia Manufacturing, 11, 2083-2090. https://doi.org/10.1016/j.promfg.2017.07.329.
Tao, F., Qi, Q., Liu, A., & Kusiak, A. (7 de 2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157-169. https://doi.org/10.1016/j.jmsy.2018.01.006.
Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4-16. https://doi.org/10.20965/ijat.2017.p0004.
Thürer, M., Pan, Y. H., Qu, T., Luo, H., Li, C. D., & Huang, G. Q. (12 de 2016). Internet of Things (IoT) driven kanban system for reverse logistics: solid waste collection. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1278-y.
Trappey, A. J., Trappey, C. V., Fan, C.-Y., Hsu, A. P., Li, X.-K., & Lee, I. J. (9 de 2017). IoT patent roadmap for smart logistic service provision in the context of Industry 4.0. Journal of the Chinese Institute of Engineers, 40, 593-602. https://doi.org/10.1080/02533839.2017.1362325.
Tu, M. (2 de 2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management. The International Journal of Logistics Management, 29, 131-151. https://doi.org/10.1108/ijlm-11-2016-0274.
Tu, M., Lim, M. K., & Yang, M.-F. (2 de 2018). IoT-based production logistics and supply chain system – Part 1. Industrial Management & Data Systems, 118, 65-95. https://doi.org/10.1108/imds-11-2016-0503.
Tu, M., Lim, M. K., & Yang, M.-F. (2 de 2018). IoT-based production logistics and supply chain system – Part 2. Industrial Management & Data Systems, 118, 96-125. https://doi.org/10.1108/imds-11-2016-0504.
Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. (8 de 2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 12, 755-779. https://doi.org/10.1080/17517575.2015.1072643.
Wang, L., Törngren, M., & Onori, M. (10 de 2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527. https://doi.org/10.1016/j.jmsy.2015.04.008.
Yan, R. (5 de 2017). Optimization approach for increasing revenue of perishable product supply chain with the Internet of Things. Industrial Management & Data Systems, 117, 729-741. https://doi.org/10.1108/imds-07-2016-0297.
Yang, R., Li, B., & Hu, Y. (5 de 2016). An Experimental Study for Intelligent Logistics: A Middleware Approach. Chinese Journal of Electronics, 25, 561-569. https://doi.org/10.1049/cje.2016.05.024.
Zhang, Y., Guo, Z., Lv, J., & Liu, Y. (9 de 2018). A Framework for Smart Production-Logistics Systems Based on CPS and Industrial IoT. IEEE Transactions on Industrial Informatics, 14, 4019-4032. https://doi.org/10.1109/tii.2018.2845683.
Zhang, Y., Zhao, L., & Qian, C. (10 de 2017). Modeling of an IoT-enabled supply chain for perishable food with two-echelon supply hubs. Industrial Management & Data Systems, 117, 1890-1905. https://doi.org/10.1108/imds-10-2016-0456.
Zhong, R. Y., Lan, S., Xu, C., Dai, Q., & Huang, G. Q. (8 de 2015). Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. The International Journal of Advanced Manufacturing Technology, 84, 5-16. https://doi.org/10.1007/s00170-015-7702-1.
Zou, Z., Chen, Q., Uysal, I., & Zheng, L. (5 de 2014). Radio frequency identification enabled wireless sensing for intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130313-20130313. https://doi.org/10.1098/rsta.2013.0313.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Exacta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.