Piezoelectric as an alternative energy source for smart cities:

an exploratory approach

Autores

  • Isaque Daniel Chaves Universidade Tecnológica Federal do Paraná / Curitiba, Paraná
  • Angélica Duarte Lima Universidade Tecnológica Federal do Paraná / Curitiba, Paraná
  • Fabiane Florencio de Souza Universidade Tecnológica Federal do Paraná / Curitiba, Paraná
  • João Luiz Kovaleski Universidade Tecnológica Federal do Paraná
  • Regina Negri Pagani Universidade Tecnológica Federal do Paraná / Curitiba, Paraná

DOI:

https://doi.org/10.5585/exactaep.2022.20692

Palavras-chave:

Piezoelectric, Power generation, Sustainability, Smart Cities

Resumo

Electricity is fundamental for the development of cities, but at the same time, it represents one of the biggest costs. In this scenario of intense use of electric energy, whose supply can be one of the biggest bottlenecks for industries, piezoelectric emerges as an alternative for energy generation and creation of autonomous systems in different spaces, such as highways, sidewalks, parks, and other public spaces, enabling the implementation of the guidelines of a smart city. The objective of this work is to explore the characteristics of this energy source. Therefore, a systematic literature review was carried out using the Methodi Ordinatio methodology. The results show that piezoelectric materials contribute to urban improvement, sustainability, real-time monitoring, health areas, population comfort, urban mobility, and numerous other areas that can help make a city smarter.

Downloads

Não há dados estatísticos.

Biografia do Autor

Isaque Daniel Chaves, Universidade Tecnológica Federal do Paraná / Curitiba, Paraná

Bacharel em Engenharia de Produção (Engenharia de Produção)

Angélica Duarte Lima, Universidade Tecnológica Federal do Paraná / Curitiba, Paraná

Doutoranda em Engenharia de Produção (UTFPR). Possui graduação em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (2017) e mestrado em Engenharia na área de Ciência e Tecnologia de Materiais na linha de Energia Solar Fotovoltaica.

Fabiane Florencio de Souza, Universidade Tecnológica Federal do Paraná / Curitiba, Paraná

Graduada em Análise e Desenvolvimento de Sistemas no Instituto Federal do Paraná, Campus Telêmaco Borba (2018). Mestre em Engenharia de Produção pela Universidade Tecnológica Federal do Paraná - UTFPR (2020), com bolsa de mestrado da Fundação Araucária na Empresa Renault e Pesquisadora no Laboratório de Gestão de Transferência de Tecnologia - GTT da mesma Universidade. Enfoque nas áreas de pesquisa: Big Data, Big Data Analytics, Gestão da Qualidade e Indústria 4.0.

João Luiz Kovaleski, Universidade Tecnológica Federal do Paraná

Doutoranda em Engenharia de Produção (UTFPR). Possuo graduação em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (2017) e mestrado em Engenharia na área de Ciência e Tecnologia de Materiais na linha de Energia Solar Fotovoltaica.

Regina Negri Pagani, Universidade Tecnológica Federal do Paraná / Curitiba, Paraná

Professora Adjunta do Magistério Superior na Universidade Tecnológica Federal do Paraná (UTFPR) no Departamento Acadêmico de Engenharia de Produção (DAENP). Docente permanente no Programa de Pós-Graduação em Engenharia de Produção (Mestrado e Doutorado). É doutora em Engenharia de Produção (UTFPR) com período sanduíche na Université de Technologie de Compiègne - Sorbonne Universités; Mestre em Engenharia de Produção (UTFPR); Especialista em Gestão Industrial (CEFET); Bacharel em Administração de Empresas (UEM); proficiente na Língua Inglesa pela Universidade de Miami (EUA). Foi professora colaboradora na Universidade Estadual de Ponta Grossa (UEPG), professora visitante na Université de Tecnologie de Troyes (UTT), França; Professora de Sociologia, Filosofia e Ética na Escola de Ministros Espírito e Verdade. É vice-líder no grupo de pesquisa Gestão da Transferência de Tecnologia, e suas pesquisas atualmente são sobre o tema Transferência de Tecnologia, Smart Cities e Tecnologias 4.0.

Referências

Ahmad, M. W., Mourshed, M., Mundow, D., Sisinni, M., & Rezgui, Y. (2016). Building energy metering and environmental monitoring - A state-of-the-art review and directions for future research. Energy and Buildings, 120, 85-102. https://doi.org/10.1016/j.enbuild.2016.03.059

Ahmed, A., Hassan, I., Ibn-Mohammed, T., Mostafa, H., Reaney, I. M., Koh, L. S. C. & Wang, Z. L. (2017). Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy and Environmental Science, 10(3), 653-671. https://doi.org/10.1039/C7EE00158D

Ahmed, R., Kim, Y., Zeeshan, & Chun, W. (2019). Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films. Energies, 12(2) https://doi.org/10.3390/en12020229

Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of things-enabled smart cities: State-of-the-art and future trends. Measurement: Journal of the International Measurement Confederation, 129, 589-606. https://doi.org/10.1016/j.measurement.2018.07.067

Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities and Society, 49. https://doi.org/10.1016/j.scs.2019.101608

Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmood, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87-111. https://doi.org/10.1016/j.adhoc.2015.04.006

Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, 16(3), R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01

Calvillo, C. F., Sánchez-Miralles, A., & Villar, J. (2016). Energy management and planning in smart cities. Renewable and Sustainable Energy Reviews, 55, 273-287. https://doi.org/10.1016/j.rser.2015.10.133

Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes-present state and future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55-81. https://doi.org/10.1016/j.cmpb.2008.02.001

Cao, Y., Sha, A., Liu, Z., Li, J., & Jiang, W. (2021). Energy output of piezoelectric transducers and pavements under simulated traffic load. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123508

Chen, X., Song, Y., Su, Z., Chen, H., Cheng, X., Zhang, J., . . . Zhang, H. (2017). Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy, 38, 43-50. https://doi.org/10.1016/j.nanoen.2017.05.047

Chen, J., Qiu, Q., Han, Y., & Lau, D. (2019). Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 101, 14-25. https://doi.org/10.1016/j.rser.2018.09.038

Franco, L. S., Franco, A. C., Doliveira, S. L. D., Maganhotto, R. F., & Magni, C. (2021). Desenvolvimento sustentável de smart cities baseada no contexto do Triple Bottom Line: uma revisão sistemática de literatura. Exacta. DOI: https://doi.org/10.5585/exactaep.2021.17877

Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875-1885. https://doi.org/10.1016/j.jclepro.2006.12.006

Hannan, M. A., Mutashar, S., Samad, S. A., & Hussain, A. (2014). Energy harvesting for the implantable biomedical devices: Issues and challenges. BioMedical Engineering Online, 13(1). https://doi.org/10.1186/1475-925X-13-79

Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Wang, D., Taylor, S., & Genovese, A. (2016). Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate): Versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy and Environmental Science, 9(11), 3495-3520. https://doi.org/10.1039/C6EE02429G

Kuang, Y., Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy harvesting during human walking to power a wireless sensor node. Sensors and Actuators, A: Physical, 254, 69-77. https://doi.org/10.1016/j.sna.2016.11.035

Lee, K. Y., Gupta, M. K., & Kim, S. -. (2015). Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy, 14, 139-160. https://doi.org/10.1016/j.nanoen.2014.11.009

Lee, J. -., Kim, J., Kim, T. Y., Al Hossain, M. S., Kim, S. -., & Kim, J. H. (2016). All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 4(21), 7983-7999. https://doi.org/10.1039/C6TA01229A

Liang, X., Ma, L., Chong, C., Li, Z., & Ni, W. (2020). Development of smart energy towns in china: Concept and practices. Renewable and Sustainable Energy Reviews, 119 https://doi.org/10.1016/j.rser.2019.109507

Macke, J., Rubim Sarate, J. A., & de Atayde Moschen, S. (2019). Smart sustainable cities evaluation and sense of community. Journal of Cleaner Production, 239 https://doi.org/10.1016/j.jclepro.2019.118103

M'Boungui, G., Adendorff, K., Naidoo, R., Jimoh, A. A., & Okojie, D. E. (2015). A hybrid piezoelectric micro-power generator for use in low power applications. Renewable and Sustainable Energy Reviews, 49, 1136-1144. https://doi.org/10.1016/j.rser.2015.04.143

Midilli, A., Dincer, I., & Ay, M. (2006). Green energy strategies for sustainable development. Energy Policy, 34(18), 3623-3633. https://doi.org/10.3390/computation9060071

Orrego, S., Shoele, K., Ruas, A., Doran, K., Caggiano, B., Mittal, R., & Kang, S. H. (2017). Harvesting ambient wind energy with an inverted piezoelectric flag. Applied Energy, 194, 212-222. https://doi.org/10.1016/j.apenergy.2017.03.016

Pagani, R. N., Kovaleski, J. L., & de Resende, L. M. M. (2017). Advances in the composition of methodi ordinatio for systematic literature review. [Avanços na composição da Methodi Ordinatio para revisão sistemática de literatura] Ciencia Da Informacao, 46(2), 161-187. https://doi.org/10.18225/ci.inf.v47i1.1886

Pagani, R. N., Soares, A. M., da Luz, A. A., Zammar, G., & Kovaleski, J. L. (2019). On Smart Cities and Sustainable Development Goals. https://www.researchgate.net/profile/Regina-Pagani/publication/341295126_On_Smart_Cities_and_Sustainable_Development_Goals/links/5f201967299bf1720d6acdec/On-Smart-Cities-and-Sustainable-Development-Goals.pdf

Song, G. J., Cho, J. Y., Kim, K. -., Ahn, J. H., Song, Y., Hwang, W., . . . Sung, T. H. (2019). Development of a pavement block piezoelectric energy harvester for self-powered walkway applications. Applied Energy, 256 https://doi.org/10.1016/j.apenergy.2019.113916

United Nations (2019). 17 Objetivos para transformar nosso mundo. Disponível em https://nacoesunidas.org/pos2015/. Access September, 2019.

United Nations (2020). Take Action for the Sustainable Development Goals. Disponível em https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Access November, 2020.

Wang, H., Jasim, A., & Chen, X. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Applied Energy, 212, 1083-1094. https://doi.org/10.1016/j.apenergy.2017.12.125

Zhao, X., Xiang, H., & Shi, Z. (2020). Piezoelectric energy harvesting from vehicles induced bending deformation in pavements considering the arrangement of harvesters. Applied Mathematical Modelling, 77, 327-340. https://doi.org/10.1016/j.apm.2019.07.048

Zhu, L., Wang, L., Xue, F., Chen, L., Fu, J., Feng, X., . . . Wang, Z. L. (2017). Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS Core–Shell nanowire array. Advanced Science, 4(1). https://doi.org/10.1002/advs.201600185

Downloads

Publicado

14.04.2022

Como Citar

Chaves, I. D., Lima, A. D., Souza, F. F. de, Kovaleski, J. L., & Negri Pagani, R. (2022). Piezoelectric as an alternative energy source for smart cities: : an exploratory approach. Exacta, 21(4), 953–969. https://doi.org/10.5585/exactaep.2022.20692

Edição

Seção

Artigos