GARCH models in financial stocks: a case study
DOI:
https://doi.org/10.5585/exactaep.v18n3.10921Keywords:
ABEV3, Conditional Heteroskedasticity, Financial Series, Volatility.Abstract
This paper aims to detail the procedure of application and evaluation of Generalized Conditional Heteroskedasticity (GARCH) models, emphasizing the appropriate choice for the residual’s distribution and the criterion of forecast evaluation. For this purpose, GARCH models with normal and Student’s t distributions are used to model the volatility of the ABEV3 stock returns series. The best model following the normal distribution and the best model following the Student-t distribution are executed for the forecast, where the results are compared to the realized volatility, calculated from intraday returns, and to the absolute returns. The results show that the GARCH(1,1) following a Student-t distribution performs better in both fitting and forecasting. In addition, the models have significantly better forecast results when evaluated by the realized volatility criterion.
Downloads
References
Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. 2ndProceedings of the International Symposium on Information Theory, Budapeste, Hungria, 267-281, 2.
Alexandrino, F.Q.L., Santos dos, R.A.B. dos, Angulo-Meza, L., & Bordeaux-Rego, R. (2017). Utilização da análise envoltória de dados (DEA) na composição de carteira de investimento diversificada e eficiente. Revista Produção Online, 17(2), 507-532.
Andersen, T.G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39, 885-905.
Angélico, D.G., & Oliveira de, S.C. (2016). Modelo ARMA-GARCH e precedência temporal entre índices acionários. GEPROS. Gestão da Produção, Operações e Sistemas, 11(1), 97-112.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 635-654.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedascitcity. Journal of Econometrics, 31, 307-372.
Box, G.E.P., & Jenkins, G. (1970). Time Series Analysis, Forecasting and Control. San Francisco: Holden-Day, San Francisco.
Coelho, L. S. dos, Santos, A. A. P., & Costa, N.C.A. (2008). Podemos prever a taxa de cambiocâmbio brasileira? Evidência empírica utilizando inteligência computacional e modelos econométricos. Gestão & Produção, 15(3), 635-647.
Cumby, R., Figlewski, S., & Hasbrouck, J. (1993). Forecasting volatility and correlations with EGARCH Models. Journal of Derivatives, 1(2), 51-63.
Dickey, D.A., & Fuller, W.A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49, 1057-1073.
Diebold, F.X., & Mariano, R.S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253-263.
Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflations. Econometrica, 50, 987-1007.
Engle, R.F., & Patton, J.A. (2001). What good is a volatility model? Quantitative Finance, 1, 237-245, 2001.
Fernandez, C., & Stell, M. (1998). On Bayesian modelling of fat tails and skewness. Journal of the American Statistical Association, 93, 359-371.
Garman, M.B., & Klass, M.J. (1980). On the estimation of security price volatility from historical data. Journal of Business, 535, :67-78.
INFOMONEY. (2018). Histórico de cotações. Recuperado em 03 julho, 2018, de https://www.infomoney.com.br/mercados/ferramentas/historico-de-cotacoes.
Jarque, C.M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163-172.
Jiang, W., Ruan, Q., Li, J., & Li, Y. (2018). Modelling returns volatility: realized GARCH incorporating realized risk measure. Physica A: Statistical Mechanics and Its Applications, 500, 249-258.
Jorion, P. (1995). Predicting Volatility in the Foreign Exchange Market. Journal of Finance, 50, 507-528.
Lai, Y.-S. (2018). Evaluating the hedging performance of multivariate GARCH models. Asian Pacific Management Review, 24(1), 1-1086-95.
Lama, A., Jha, G. K., Paulo, R. K., & Gurung, B. (2015). Modelling and Forecasting of Price Volatility: An Application of GARCH and EGARCH models. Agricultural Economics Research Review, 28(1), 73-82.
Lim, C. M., & Sek, S. K. (2013). Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. International Conference of Applied Economics (ICOAE). Procedia Economics and Finance, 5, 478-487.
Ljung, G. M., & Box, G.E.P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297-303.,
Luo, L., Pairote, S., & Chatpatanasiri, R. (2017). Garch-type forecasting models for volatility of stock market and MCS test. Communications in Statistics – Simulation and Computation, 46(7), 5303-5312.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 5, 77-91.
Mhmoud, A. S., & Dawalbait, F. M. (2015). Estimating and forecasting stock market volatility using GARCH Models: Empirical Evidence from Saudi Arabia. International Journal of Engineering Research & Technology, 4(2):464-471.
Mincer, J., & Zarnowitz, V. (1969). The Evaluation of Economic Forecasts. In Mincer, J. (Ed.). Economic Forecasts and Expectations (pp. 3-46). Nova Iorque: National Bureau of Economic Research.
Morettin, P.A. (2011). Econometria Financeira – Um curso em séries temporais financeiras. (2. a Eded.). São Paulo: Blucher.
Nelson, D. B. (1991). Conditional Heteroscedasticity in asset returns. Econometrica, 59, 347-370.
Ng, S., & Perron, P. (2001). Lag Length selection and the construction of unit root tests with good size and power. Econometrica: Journal of the Econometric Society, 6, 1519-1554.
Oliveira, A. M. B. de, & Araújo, A. M. (2018). Investigação sobre persistência na variância e quebras estruturais nas series de preços da manga e uva exportadas da Bahia, Brasil. Exacta-EP, 16(1), 33-42.
Oliveira, M.H.F, & Rebelatto, D.A.N. (2011). Os fundos de investimentos em ações no mercado financeiro brasileiro: os gestores e administradores são capazes de superar o índice BOVESPA? Revista Produção Online, 11(1), 76-95.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, AustriaÁustria: R Core Team. Recuperado em 10 abril de 2018, de http://www.R-project.org/.
Reis, D.L.P.E. dos, Mattos, R.S., Perobelli, F.F.C., & Corrêa, W.R. (2013). Options Pricing for Petrobras Share: A Comparison between Realized Volatility and Conditional Heteroskedastic Estimations. In: First International Workshop in Financial Econometrics, Natal, Rio Grande do Norte, BrazilBrasil, 1.
Santos, D. G. dos., & Ziegelmann, F. A. (2012) Estimação e previsão de volatilidade em períodos de crise: um estudo comparando modelos GARCH e modelos aditivos semiparamétricos. Revista Brasileira de Finanças, 10(1):49-70.
Schmidt, C.A.J, & Lima, M. A. M. (2004). A demanda por energia elétrica no Brasil. Revista Brasileira de Economia, 58, 67-98.
Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464.
Simões, M. D., Klotzle, M. C., Pinto, A. C. F., & Levrini, G. (2012). Uma avaliação da volatilidade dos preços da soja no Mercado internacional com dados de alta frequência. Gestão & Produção, 19(1): 219-231.
Tsay, R. S. (2002). Analysis of Financial Time Series: Financial Econometrics. Wiley, Nova Iorque.
Yip, H., Fan, H., & Chaing, Y (2013). Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box-Jenkins time series models. Automation in Construction, 38:30-38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Exacta – Engenharia de Produção
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.