Decision-making in cyber-physical systems: a bibliometric analysis

Authors

DOI:

https://doi.org/10.5585/exactaep.2021.13163

Keywords:

Industry 4.0, Smart production, Autonomous decision, Mass customization, Demand forecast

Abstract

The changes in the consumption profile for a greater variety of products have raised the production customization level. To meet this need, manufacturing has developed initiatives that are consolidated in Industry 4.0, characterized by the use of solutions for virtualization or digital twins, internet of things, big data, and in particular, the use of cyber-physical systems (CPS). This means re-evaluating the inputs adopted in the decision-making. Faced with this issue, the question that guided of this work arises: how has decision-making been treated in the cyber-physical environment? A literature review was used as a research method in conjunction with bibliometric analysis. The results indicate that CPS systems need decision autonomy through real-time information from elements of the production chain as remotely as possible.

Downloads

Download data is not yet available.

Author Biographies

Henrique Lima Santana, Universidade Metodista de Piracicaba

Bacharel em Engenharia de Petróleo pela Universidade Santa Cecília, Tecnólogo em Logística pela Universidade Paulista, MBA em Gerenciamento de Projetos pela Fundação Getúlio Vargas, e atualmente Mestrando em Engenharia de Produção pela Universidade Metodista de Piracicaba com linha de pesquisa em Gestão Estratégica de Operações. Atua, desde 1997, na área de supply chain por intermédio da definição da estratégia de suprimento, planejamento das demandas, análise limitante dos recursos, provisão operacional (distribuição, almoxarifado, multimodalidade, milkrun, logística reversa) e implantação de projetos estruturais / sistêmicos (unidades de negócio e ERP). Possui ainda as certificações PMP (Project Management Professional - PMI) e Six Sigma Black Belt (UNICAMP).

Maria Rita Pontes Assumpção, Universidade Metodista de Piracicaba

Doutora em Engenharia (Engenharia de Produção) pela Universidade de São Paulo (2001), mestre em Engenharia de Sistemas e Computação pela Universidade Federal do Rio de Janeiro (1979), Bacharel em Matemática pela Universidade de São Paulo (1974). Atua, desde 2011, como professora na Graduação e na Pós Graduação em Engenharia de Produção na UNIMEP/SP, orientando nos temas: gestão de serviços, gestão de operações, gestão estratégica, gestão da inovação, coordenação da cadeia de suprimentos.

References

Babiceanu, R. F., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, v. 81, pp. 128-137.

Bai, T. (2009). Strategic capabilities: antece dents to mass customization. International Conference on Electronic Commerce and

Business Intelligence, pp. 302-305.

Bauer, H., Schoonmann, A., & Reinhart, G. (2017). Approach for model-based change impact analysis in factory systems. IEEE International Symposium on Systems Engineering.

Broadus, R. N. (1987). Toward a definition of "bibliometrics". Scientometrics, v. 12, pp. 373-379.

Camarinha-Matos, L. M., & Afsarmanesh, H. (2014). Collaborative systems for smart environments: Trends and challenges. IFIP Advances in Information and Communication Technology, v. 434, pp. 3-15.

De Matos, E. B., Niyama, J. K., Neto, L. M., & Marques, M. M. (2012). Congresso ANPCONT: análise bibliométrica descritiva e avaliativa dos artigos publicados de 2007 a 2011. Enfoque: Reflexão Contábil, v. 31, pp. 73-88.

Eck, N. J., & Waltman, L. (2018). VOSviewer – visualizing scientific landscapes. Version 1.6.7 Copyright 2009-2018.

Frazzon, E. M., Albrecht, A., Pires, M., & Israel, E. (2018). Hybrid approach for the integrated scheduling of production and transport processes along supply chains. International Journal of Production Research, v. 56, pp. 2019-2035.

Google LLC. (20 de Dez de 2018). Articles. Fonte: Google Scholar: https://scholar.google.com.br/

Gutiérrez-Salcedo, M., Martínez, M., Moral-Munoz, J., Herrera-Viedma, E., & Cobo, M. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, v. 48, pp. 1275-1287.

Henriques, F., & Miguel, P. A. (2015). Modularidade na indústria automotiva: seleção de um portfólio de artigos para pesquisa por meio de uma análise bibliométrica. Exacta – EP, v. 13, pp. 389-401.

Ilic, M. D., Xie, L., Khan, U. A., & Moura, J. M. (2010). Modeling of Future Cyber–Physical Energy Systems for Distributed Sensing and Control. IEEE Transactions on Systems, v. 40, pp. 825-838.

Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Noh, S. D. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing, v. 3, pp. 111–128.

Karlsson, C. (2008). Researching operations management. Research methods for operational management, pp. 41-44.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, v. 81, pp. 11-25.

Lopes, A. P., & De Carvalho, M. M. (2012). Evolução da literatura de inovação em relações de cooperação: um estudo bibliométrico num período de vinte anos. Gestão e Produção, v. 19, pp. 203-217.

Mcburney, M. K., & Novak, P. L. (2002). What is bibliometrics and why should you care? IEEE International Professional Communication Conference, pp. 108-114.

Microsoft. (2016). Excel® MSO (16.0.4266.1001). Microsoft Corporation. All Rights Reserved.

Moed, H. F., & Van Leeuwen, T. N. (1995). Improving the accuracy of institute for scientific information's journal impact factors. Journal of the American Society for Information Science, v. 46, pp. 461-467.

Neely, A. (2005). The evolution of performance measurement research: developments in the last decade and a research agenda for the next. International Journal of Operations & Production Management, v. 25, pp. 1264-1277.

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, v. 83, pp. 121-139.

Osorio, N. L., & Otieno, A. W. (2008). A survey of manufacturing engineering databases. Collection Building, v. 27, pp. 22-29.

Papa, G., Zurutuza, U., & Uribeetxeberria, R. (2016). Cyber physical

system based proactive collaborative maintenance. Proceedings of 2016 International Conference on Smart Systems and Technologies, pp. 173-178.

Pereira, R. A., Ribeiro, M. S., & Bianchini, D. (2014). Tomada de decisão mediante aos impactos da turbulência nas convergências tecnológicas no mercado de telefonias móveis: Um estudo à luz da estabilidade dinâmica. Exacta – EP, v. 12, pp. 105-122.

Prasad, S., & Tata, J. (2005). Publication patterns concerning the role of teams/groups in the information systems literature from 1990 to 1999. Information and Management, v. 42, pp. 1137-1148.

Reuters, T. (12 de mai de 2018). Company history (historical highlights from across Thomson Reuters). Fonte: https://www.thomsonreuters.com/en/about-us/company-history.html

Swain, D. T., Couzin, I. D., & Leonard, N. E. (2012). Real-Time Feedback-Controlled Robotic Fish for Behavioral Experiments With Fish Schools. Proceedings of the IEEE, v. 100.

Tham, C. K., & Luo, T. (2013). Sensing-Driven Energy Purchasing in Smart Grid Cyber-Physical System. IEEE Transactions on Systems, v. 43.

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 - A Glimpse. Procedia Manufacturing - Elsevier, v. 20, pp. 233-238.

Wang, L., Torngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, v. 37, pp. 517-527.

Wang, Q., & Sun, X. (2018). The international journal of production research in the past, the present and the future: a bibliometric analysis. International Journal of Production Research.

Williams, R., & Bornmann, L. (2016). Sampling issues in bibliometric analysis. Journal of Informetrics, v. 10, pp. 1225-1232.

Zhao, P., Suryanarayanan, S., & Simoes, M. G. (2013). An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. IEEE Transactions on Industry Applications, v. 49, pp. 322-330.

Published

2023-03-22

How to Cite

Santana, H. L., & Assumpção, M. R. P. (2023). Decision-making in cyber-physical systems: a bibliometric analysis. Exacta, 21(1), 1–22. https://doi.org/10.5585/exactaep.2021.13163

Most read articles by the same author(s)