Potential environmental impacts of photovoltaic solar energy on industry

Authors

DOI:

https://doi.org/10.5585/exactaep.2021.18998

Keywords:

renewable energy, bioenergy, solar energy, environmental impacts, industrial sector

Abstract

Solar energy is considered one of the most importants renewable energy resources to decrease the dependence on fossil fuels. Therefore, this study aims to conduct a systematic review of the literature on high impact research on the environmental impacts avoided with the use of solar photovoltaic energy in the industrial sector to investigate trends in this body of literature. To this end, filters were applied to the gross portfolio between 209 articles and 22 were selected to identify the most relevant and high impact studies in the area. The results show the main trends in the referred body of literature, possible connections of photovoltaic solar energy and environmental impacts in the industry, as well as the main researchers who carry out studies. This study provides an overview of the impacts avoided with the use of solar photovoltaic energy in the possibilities of future research.

Downloads

Download data is not yet available.

Author Biographies

Antonio Carlos Franco, Universidade Estadual de Maringá - UEM / Maringá - PR

Graduação em Engenharia Mecânica (UTFPR). Mestrado no Programa de Pós-Graduação em Bioenergia da Universidade Estadual de Maringá - UEM.

Mauro Antonio da Silva Sá Ravagnani, Universidade Estadual de Maringá - UEM / Maringá - PR

Na UEM é Professor Titular, lotado no Departamento de Engenharia Química, atuando como orientador de alunos de Mestrado e Doutorado no Programa de Pós-Graduação em Engenharia Química, de alunos de Mestrado no Programa de Pós-Graduação em Bioenergia e de alunos de Mestrado no Programa de Pós-Graduação em Engenharia de Produção da UEM. Doutor em Engenharia Química pela Universidade Estadual de Campinas - Unicamp. Pós-doutorado na Universidade de Alicante - UA - Espanha.

Bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico - Processos 311807 / 2018-6 e 428650 / 2018-0 - CNPq (Brasil)

Luciane Silva Franco, Universidade Tecnológica Federal do Paraná (UTFPR) /; Curitiba, PR

Graduação em Administração pela Universidade Estadual do Paraná. Mestrado em Engenharia de Produção pela Universidade Tecnológica Federal do Paraná (UTFPR).

References

Adenle, A. A. (2020). Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy, 137, 111-117. https://doi.org/https://doi.org/10.1016/j.enpol.2019.111180

Branker, K., & Pearce, J. M. (2010). Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada. Energy Policy, 38(8), 4291–4303. https://doi.org/10.1016/j.enpol.2010.03.058

Castro, V., & Frazzon, E. (2017). Benchmarking of best practices: an overview of the academic literature. Benchmarking: An International Journal, 24(3), 750-774. http://doi.org/10.1108/BIJ-03-2016-0031

Chen, Y., Wan, X., & Long, G. (2013). High performance photovoltaic applications using solution-processed small molecules. Accounts of Chemical Research, 46(11), 2645–2655. https://doi.org/10.1021/ar400088c

Contreras, A., Carpio, J., Molero, M., & Veziroglu, T. N. (1999). Solar-hydrogen: An energy system for sustainable development in Spain. International Journal of Hydrogen Energy. 24(11), 1041-1052.

Corona, B., Bozhilova-Kisheva, K. P., Olsen, S. I., & San Miguel, G. (2017). Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal. Journal of Industrial Ecology, 21(6), 1566–1577. https://doi.org/10.1111/jiec.12541

Duarte, C. G., & Malheiros, T. F. (2015). Sustentabilidade e Políticas Públicas para o setor sucroenergético: uma análise dos temas abordados. Revista Gestão Ambiental e Sustentabilidade, 4(3), 122 - 138.

Dubey, S., Jadhav, N. Y., & Zakirova, B. (2013). Socio-Economic and

Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, 322–334. https://doi.org/https://doi.org/10.1016/j.egypro.2013.05.073

Elgamal, G. N. G., & Demajorovic, J. (2020). Barriers and perspectives for electric power generation out of photovoltaic solar panels in the brazilian energy matrix. Journal of Environmental Management & Sustainability, 9(1), 1-26, e17157.

https://doi.org/10.5585/geas.v19i1.17157.

Elsevier. 2020. "Research Platforms". 2020. Accessed 20 July 2020. https://www.elsevier.com/pt-br/research-platforms.

El-Shobokshy, M. S., & Al-Saedi, Y. G. (1993). The impact of the gulf war on the Arabian environment-I. Particulate pollution and reduction of solar irradiance. Atmospheric Environment Part A, General Topics, 27(1), 95–108. https://doi.org/10.1016/0960-1686(93)90074-9

Grippo, M., Hayse, J. W., & O’Connor, B. L. (2014). Solar Energy Development and Aquatic Ecosystems in the Southwestern United States: Potential Impacts, Mitigation, and Research Needs.

Environmental Management, 55(1), 244–256. https://doi.org/10.1007/s00267-014-0384-x

Ha, Y. H., Byrne, J., Lee, H.-S., Lee, Y.-J., & Kim, D.-H. (2020). Assessing the impact of R&D policy on PV market development: The case of South Korea. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2). https://doi.org/10.1002/wene.366

Hamid, B., Bagher, A. M., Reza, B. M., & Mahboubeh, B. (2016). Review of sustainable energy sources in Kerman. World Journal of Engineering, 13(2), 109–119. https://doi.org/10.1108/WJE-04-2016-014

Korkmav, H., Unsal, O., Gorgun, H. V., & Avci, E. (2020). Energy

Efficiency in Lumber Drying - Sample of Drying Red Pine (Pinus brutia) Using Solar Energy. Journal of polytechnic-politeknik dergisi, 23(3), 671–676.

Lamont, L. A., & El Chaar, L. (2011). Enhancement of a stand-alone photovoltaic system’s performance: Reduction of soft and hard shading. Renewable Energy, 36(4), 1306–1310. https://doi.org/10.1016/j.renene.2010.09.018

Li, K., Liu, C., Jiang, S., & Chen, Y. (2020). Review on hybrid geothermal and solar power systems. Journal of cleaner production, 250. https://doi.org/10.1016/j.jclepro.2019.119481

Noh, M. F. M., Arzaee, N. A., Mumthas, I. N. N., Mohamed, N. A., Nasir, S. N. F. M., Safaei, J., & Teridi, M. A. M. (2020). High-humidity processed perovskite solar cells. Journal of materials chemistry A, 8(21), 10481–10518. https://doi.org/10.1039/d0ta01178a

Norris, M., & C. Oppenheim. 2007. Comparing alternatives to the Web of Science for coverage of the social sciences’ literature. Journal of Informetrics, 1(2): 161-169. doi: 10.1016/j.joi.2006.12.001.

Paines, P. A., Vignochi, L., Possamai, O. (2018). Simulation of

photovoltaic systems for commercial sector. Exacta - EP, 16(3), p.17-30.

Price, T. (2008). Making the case for solar energy. Optics and Photonics News, 19(10), 18–19. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-57849131331&partnerID=40&md5=7e27a3d2caee1e823b83c9398b61bc

a0

Rey-Martínez, F J; Velasco-Gómez, E; Martín-Gil, J; Navas Gracia, L M; & Hernández Navarro, S. (2008). Life cycle analysis of a thermal solar installation at a rural house in Valladolid - Spain. Environmental Engineering Science. 25(5), 713-724.

Samaniego-Rascón, D., Gameiro da Silva, M. C., Ferreira, A. D., & Cabanillas-Lopez, R. E. (2019). Solar energy industry workers under climate change: A risk assessment of the level of heat stress experienced by a worker based on measured data. Safety Science, 118, 33–47. https://doi.org/https://doi.org/10.1016/j.ssci.2019.04.042

Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080–1118. https://doi.org/https://doi.org/10.1016/j.rser.2014.09.002

Shlikhter, A. A. (2018). Paris climate conference and priorities of donald trump’s energy policy. World Economy and International Relations, 62(12), 65–74. https://doi.org/10.20542/0131-2227-2018-62-12-65-74

Stoicanescu, M., Crisan, A., Milosan, I., Pop, M. A., Garcia, J. R., Giacomelli, I., & Chivu, O. R. (2019). Heat treatment of steel 1.1730 with concentrated solar energy. Materiale Plastice, 56(1), 261–270. https://doi.org/10.37358/mp.19.1.5163

Tan, Z., Zhang, H., Xu, J., Wang, J., Yu, C., & Zhang, J. (2012). Photovoltaic power generation in China: Development potential, benefits of energy conservation and emission reduction. Journal of Energy Engineering, 138(2), 73–86. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000062

Van Raan, A.F. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. Technology Assessment-Theory and Practice, 1(12), 20-29. https://doi.org/10.14512/tatup.12.1.20

Venkata Sai, P., & Reddy, K. S. (2020). 4-E (Energy-Exergy-Environment-

Economic) analyses of integrated solar powered jaggery production plant with different pan configurations. Solar Energy, 197, 126–143. https://doi.org/https://doi.org/10.1016/j.solener.2019.12.026

Downloads

Published

2023-03-22

How to Cite

Franco, A. C., Ravagnani, M. A. da S. S., & Franco, L. S. (2023). Potential environmental impacts of photovoltaic solar energy on industry. Exacta, 21(1), 249–269. https://doi.org/10.5585/exactaep.2021.18998