Uma Reflexão da Literatura Sobre Técnicas Computacionais Aplicadas À Gestão Da Manutenção de Trens
DOI:
https://doi.org/10.5585/2024.22639Keywords:
maintenance planning and control, railway, computational modelsAbstract
This text aims to provide guidance on the current state of the literature on aspects related to the application of computational resources to improve the management of rolling stock maintenance and, based on that, propose guidelines for researchers on the subject. This study presents a literature review with applied research articles. In conclusion, we found that linear programming, genetic algorithms and neural networks bring good results in helping railway maintenance managers. It should be noted that there is still a preference for automating manual work in order to achieve cost reduction or maximize the use of maintenance resources. Due to the large increase in research on applications of computing resources, this article brings generalizations of applications for the same topic, which is the maintenance of rolling stock and the difficulty of managing these assets.
Downloads
References
Andrade, A. R., & Stow, J. (2017). Assessing the efficiency of maintenance operators: a case study of turning railway wheelsets on an under-floor wheel lathe. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 231(2), 155-163. https://doi.org/10.1177/1748006X16688606
Andrés, J., Cadarso, L., & Marín, Á. (2015). Maintenance scheduling in rolling stock circulations in rapid transit networks. Transportation Research Procedia, 10, 524-533. https://doi.org/10.1016/j.trpro.2015.09.006
Almeida, L., Miguel, P. C., & da Silva, M. T. (2011). Uma revisão da literatura sobre" servitização": bases para a proposição de um modelo conceitual de decisão. Exacta, 9(3), 339-354. https://doi.org/10.5585/Exacta.v9i3.3115
Belhot, R. V., & Campos, F. C. D. (1995). Relações entre manutenção e engenharia de produção: uma reflexão. Production, 5(2), 125-134. https://doi.org/10.1590/S0103-65131995000200001
Bento, E. P., & Kagan, N. (2008). Algoritmos genéticos e variantes na solução de problemas de configuração de redes de distribuição. Sba: Controle & Automação Sociedade Brasileira de Automatica, 19(3), 302-315. https://doi.org/10.1590/S0103-17592008000300006
Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019).
A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
Cheng, Y. H., & Tsao, H. L. (2010). Rolling stock maintenance strategy selection, spares parts’ estimation, and replacements’ interval calculation. International Journal of Production Economics, 128(1), 404-412. https://doi.org/10.1016/j.ijpe.2010.07.038
Costa, M. D. A. (2013). Gestão estratégica da manutenção: uma oportunidade para melhorar o resultado operacional. Trabalho de Diplomação, UFJF, Juiz de Fora.
Souza Hipólito de, R., Akiyoshi Toda, F., & Barroso Rocha, S. (2019). Implantação de um Modelo de Gestão por Resultados em uma Empresa de Transporte Ferroviário. Revista FSA, 16(1). DOI: http://dx.doi.org/10.12819/2019.16.1.1
Erguido, A., Márquez, A. C., Castellano, E., Flores, J. L., & FernÁndez, J. G. (2020). Reliability-based advanced maintenance modelling to enhance rolling stock manufacturers’ objectives. Computers & Industrial Engineering, 106436. https://doi.org/10.1016/j.cie.2020.106436
Freitas, Nilton de. 2015. Fundamentos de Vagões MRS. Apostila para desenvolvimento de funcionários da MRS Logística.
Gençer, M. A., Yumusak, R., Ozcan, E., & Tamer, E. R. E. N (2020). An Artificial Neural Network Model for Maintenance Planning of Metro Trains. Politeknik Dergisi. https://doi.org/10.2339/politeknik.693223
Giacco, G. L., D’Ariano, A., & Pacciarelli, D. (2014). Rolling stock rostering optimization under maintenance constraints. Journal of Intelligent Transportation Systems,18(1),95-105. https://doi.org/10.1080/15472450.2013.801712
Gu, H., Joyce, M., Lam, H. C., Woods, M., & Zinder, Y. (2019). A genetic algorithm for assigning train arrival dates at a maintenance centre. IFAC-PapersOnLine, 52(13), 957-962. https://doi.org/10.1016/j.ifacol.2019.11.318
Haykin, S.(2001). Redes neurais princípios e práticas. 2◦.ed.Porto Alegre:Bookman, 900(pp. 39-63).
Felix, J. C., Peixoto, C. S., & Edwiges, C. A. (2021).O planejamento de suprimentos utilizando-se a teoria de filas e simulação computacional em uma oficina de recuperação de componentes de vagões. Exacta.https://doi.org/10.5585/exactaep.2021.19577
Felix, J.C., Barbosa, L.C.M., & Valente, A.F.D.A (2021). Um estudo sobre as condições de trabalho e layout industrial para a realização de mudanças em uma oficina de componentes ferroviários da mrs logística.Exacta.
Lai, Y. C., Fan, D. C., & Huang, K. L. (2015). Optimizing rolling stock assignment and maintenance plan for passenger railway operations. Computers & Industrial Engineering, 85, 284-295. https://doi.org/10.1016/j.cie.2015.03.016
Luan, X., Miao, J., Meng, L., Corman, F., & Lodewijks, G. (2017). Integrated optimization on train scheduling and preventive maintenance time slots planning. Transportation Research Part
C: Emerging Technologies, 80, 329-359. https://doi.org/10.1016/j.trc.2017.04.010
Maróti, G., & Kroon, L. (2005). Maintenance routing for train units: the transition model. Transportation Science, 39(4), 518-525. https://doi.org/10.1287/trsc.1050.0116
Maróti, G., & Kroon, L. (2007). Maintenance routing for train units: The interchange model. Computers & Operations Research, 34(4), 1121-1140. https://doi.org/10.1016/j.cor.2005.05.026
Mira, L., Andrade, A. R., & Gomes, M. C. (2020). Maintenance scheduling within rolling stock planning in railway operations under uncertain maintenance durations. Journal of Rail Transport Planning & Management. https://doi.org/10.1016/j.jrtpm.2020.100177
Pilar, J. V., Santana, A. G., & Leão, A. E. (1998). Uma abordagem alternativa para a utilização da programação linear com curvas segmentadas no planejamento de sistemas de recursos hídricos. Anais do IV Simpósio de Recursos Hídricos do Nordeste, Campina Grande, CD-ROM.
Pozo, A., Cavalheiro, A. D. F., Ishida, C., Spinosa, E., & Rodrigues, E. M. (2005). Computação evolutiva. Universidade Federal do Paraná, 61p.(Grupo de Pesquisas em Computação Evolutiva, Departamento de Informática-Universidade Federal do Paraná).
Prado, D. (2016). Programação linear (Vol. 1). Falconi Editora.
Ramos, M. J., & Schrattner, R. (2020). Implantação de sistema de planejamento e controle da manutenção em uma indústria de ingredientes alimentícios. Revista Técnico-Científica, (23).
Santos, L. L. D. S. (2014). O trem não pode parar: reformando uma oficina de locomotivas (Doctoral dissertation).
Shebani, A., & Iwnicki, S. (2018). Prediction of wheel and rail wear under different contact conditions using artificial neural networks. Wear, 406, 173-184. https://doi.org/10.1016/j.wear.2018.01.007
Slack, N., Chambers, S., & Johnston, R. (2009). Administração da produção (Vol. 2). São Paulo: Atlas.
Souza, J. B. D. (2008). Alinhamento das estratégias do planejamento e controle da manutenção (PCM) com as finalidades e funções do planejamento e controle da produção (PCP): uma abordagem analítica. José Barrozo de Souza.--Ponta Grossa:[sn].
Sriskandarajah, C., Jardine, A. K. S., & Chan, C. K. (1998). Maintenance scheduling of rolling stock using a genetic algorithm. Journal of the Operational Research Society, 49(11), 1130-1145. https://doi.org/10.1057/palgrave.jors.2600627
Tomiyama, T., Sato, T., Okada, K., Wakamiya, T., & Murata, T. (2018). Railway Rolling-Stock-Assignment-Scheduling Algorithm for Minimizing Inspection Cost. International Journal of Applied Mathematics, 48(2).
Tönissen, D. D., & Arts, J. J. (2018). Economies of scale in recoverable robust maintenance location routing for rolling stock. Transportation Research Part B: Methodological, 117, 360-377. https://doi.org/10.1016/j.trb.2018.09.006
Tönissen, D. D., & Arts, J. J. (2020). The stochastic maintenance location routing allocation problem for rolling stock. International Journal of Production Economics, 107826. https://doi.org/10.1016/j.ijpe.2020.107826
Tönissen, D. D., Arts, J. J., & Shen, Z. J. (2019). Maintenance location routing for rolling stock under line and fleet planning uncertainty. Transportation Science, 53(5), 1252-1270. https://doi.org/10.1287/trsc.2018.0866
Tsuruta, J. H., & Narciso, M. G. (2000). Um estudo sobre algoritmos genéticos. Embrapa Informática Agropecuária.
Turner, C., Tiwari, A., Starr, A., & Blacktop, K. (2016). A review of key planning and scheduling in the rail industry in Europe and UK. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(3), 984-998. https://doi.org/10.1177/0954409714565654
Wagenaar, J., & Kroon, L. G. (2015). Maintenance in railway rolling stock rescheduling for passenger railways. ERIM Report Series Reference No. ERS-2015-002-LIS. http://dx.doi.org/10.2139/ssrn.2566835
Wagenaar, J. C., Kroon, L. G., & Schmidt, M. (2017). Maintenance appointments in railway rolling stock rescheduling. Transportation Science, 51(4), 1138-1160. https://doi.org/10.1287/trsc.2016.0701
Wu, J., Lin, B., Wang, H., Zhang, X., Wang, Z., & Wang, J. (2018b). Optimizing the high-level maintenance planning problem of the electric multiple unit train using a modified particle swarm optimization algorithm. Symmetry, 10(8), 349. https://doi.org/10.3390/sym10080349
Wu, J., Lin, B., Wang, J., & Liu, S. (2018a). A network-based method for the EMU train high-level maintenance planning problem. Applied Sciences, 8(1), 2.
Vianna, D. S., & Vianna, M. D. F. D. (2014). Hybrid GRASP heuristics for the phylogeny problem combining path-relinking and genetic algorithm as an intensification strategy. Production, 24, (pp. 664-674).
Xu, Y. N., Qiao, Q., Wu, R. F., & Zhou, Z. P. (2019). Advanced maintenance cycle optimization of urban rail transit vehicles. Advances in Mechanical Engineering, 11(2), 1687814019827113.
Yin, J., & Zhao, W. (2016). Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A deep learning approach. Engineering Applications of Artificial Intelligence, 56, 250-259.
Zhao, Y., Guo, Z. H., & Yan, J. M. (2017). Vibration signal analysis and fault diagnosis of bogies of the high-speed train based on deep neural networks. Journal of vibro engineering, 19(4), 2456-2474.
Zhong, Q., Lusby, R. M., Larsen, J., Zhang, Y., & Peng, Q. (2019). Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway. Transportation Research Part B: Methodological, 126, 24-44.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Autores
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.