Normality tests: a study of residuals obtained on time series tendency modeling

Authors

DOI:

https://doi.org/10.5585/2023.22928

Keywords:

Normality Tests, Residual analysis, Time Series modeling

Abstract

The normality analysis in the distribution of residuals is a determining criterion to verify and validate a model. For example, in modeling financial time series by linear regression, the residuals should be independent of each other, identically distributed, have a normal distribution, and be homoscedastic. Thus, it was aimed to study the performance of some normality tests applied on the residuals obtained from linear regression modeling of time series tendency using polynomials of different degrees. The Jarque-Bera, Anderson-Darling, Kolmogorov-Smirnov-Lilliefors, Doornik-Hansen, and Shapiro-Wilk tests were used, there was agreement in almost all test results, with the exception of the Doornik-Hansen test. 

Downloads

Download data is not yet available.

Author Biographies

Fabian Corrêa Cardoso, Universidade de Rio Verde / Rio Verde, GO

Mestre, Universidade de Rio Verde, Faculdade de Engenharia de Software e Exatas.

Rafael Alceste Berri, Universidade Federal do Rio Grande / Rio Grande, RS

Doutor, Universidade Federal do Rio Grande, Centro de Ciências Computacionais e Exatas.

Giancarlo Lucca, Universidade Federal do Rio Grande / Rio Grande, RS

Doutor, Universidade Federal do Rio Grande, Centro de Ciências Computacionais e Exatas.

Eduardo Nunes Borges, Universidade Federal do Rio Grande / Rio Grande, RS

Doutor, Universidade Federal do Rio Grande, Centro de Ciências Computacionais e Exatas.

Viviane Leite Dias de Mattos, Universidade Federal do Rio Grande / Rio Grande, RS

Doutora, Universidade Federal do Rio Grande, Instituto de Matemática, Estatística e Física, Exatas.

References

Abdi, H.; Molin, P. (2007). Lilliefors/Van Soest test of normality. Encyclopedia of measurement and statistics. pp. 540-544.

Adkins, L. C. (2018). Using gretl for Principles of Econometrics, Version 1.0411. 5ª. Oklahoma State University, Oklahoma, USA. Recuperada em 23 fevereiro, 2022 de http://www.learneconometrics.com/gretl/poe5/using_gretl_for_POE5.pdf.

Ahmad, F., & Sherwani, R. A. K. (2015). A power comparison of various normality tests. Pakistan Journal of Statistics and Operation Research, pp. 331-345. https://doi.org/10.18187/pjsor.v11i3.845

Ahsanullah, M.; Kibria, B. M. G., & Shakil, M. (2014). Normal and Student’s t Distributions and Their Application, Vol. 4. Paris: Atlantic Press.

Alves, D., & Pereda, P. C. (2018). Econometria Aplicada. Rio de Janeiro: Elsevier. Recuperada em 08 fevereiro, 2022 de https://integrada.minhabiblioteca.com.br/#/books/9788595156012/.

Anderson, T. W. (2010). Anderson-Darling Tests of Goodness-of-Fit. International encyclopedia of statistical science, Vol. 1, pp. 52-54. https://doi.org/10.1007/978-3-642-04898-2_118

Anderson, T. W., & Darling, D. A. (1952). Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes. Annals of Mathematical Statistics, Vol. 23, pp. 193-212. https://doi.org/10.1214/aoms/1177729437

Arshad, M., Rasool, M. T., & Ahmad, M. I. (2003). Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution. Pakistan Journal of Applied Sciences, Vol. 3, nº. 2, pp. 85-88. https://doi.org/10.3923/jas.2003.85.88

Bueno, R. de L. da S. (2018). Econometria de séries temporais. 2ª. São Paulo: Cengage Learning. Recuperada em 08 fevereiro, 2022 de https://integrada.minhabiblioteca.com.br/#/books/9788522128259/.

Cramér, H. On the composition of elementary errors. Skand Aktuarietids, v. 11, p. 13-74, 1928.

Das, K. R., & Imon, A. H. M. R. (2016). A Brief Review of Tests of Normality. American Journal of Theoretical and Applied Statistics. Vol. 5, nº. 1, 2016, pp. 5-12. https://doi.org/10.11648/j.ajtas.20160501.12

Demir, S. Comparison of normality tests in terms of sample sizes under different skewness and Kurtosis coefficients. International Journal of Assessment Tools in Education, Vol. 9, nº. 2, 2022, pp. 397-409.

Doornik, J. A., & Hansen, H. (1994). An Omnibus Test for Univariate and Multivariate Normality. Transformation, Vol. 2, pp. 2-17. https://doi.org/10.1111/j.1468-0084.2008.00537.x

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, pp. 987-1007. https://doi.org/10.2307/1912773

Farrell, P. J., Salibian-Barrera, M., & Naczk, K. (2007). On tests for multivariate normality and associated simulation studies. Journal of statistical computation and simulation, Vol. 77, nº. 12, pp. 1065-1080. https://doi.org/10.1080/10629360600878449

Ghasemi, A., & Zahediasl, S. (2012). Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. International Journal of Endocrinology and Metabolism, Vol. 10, nº. 2, pp. 486-489. https://doi.org/10.5812/ijem.3505

Górecki, T., Horváth, L., & Kokoszka, P. (2020). Tests of normality of functional data. International Statistical Review, Vol. 88, nº. 3, pp. 677-697. https://doi.org/10.1111/insr.12362

Grace, A. W., & Wood, I. A. (2012). Approximating the tail of the Anderson–Darling distribution. Computational Statistics and Data Analysis. Vol. 56, nº. 12, pp. 4301–4311. https://doi.org/10.1016/j.csda.2012.04.002

Gross, J., & Ligges, U. Package ‘nortest’. (2015) Recuperada em 07 fevereiro, 2022 de https://cran.r-project.org/web/packages/nortest/nortest.pdf.

Gujarati, D. N., & Porter, D. C. (2011). Econometria Básica. Tradução Denise Durante, Mônica Rosemberg, Maria Lúcia G. L. Rosa. 5ª. Porto Alegre: McGraw Hill Bookman. Recuperada em 15 setembro, 2021 de https://integrada.minhabiblioteca.com.br/#/books/9788580550511/.

Güner, B., Frankford, M. T., & Johnson, J. T. (2009). A study of the Shapiro–Wilk test for the detection of pulsed sinusoidal radio frequency interference. IEEE transactions on Geoscience and Remote Sensing, Vol. 47, nº. 6, pp. 1745-1751. https://doi.org/10.1109/TGRS.2008.2006906

Hill, R. C., Griffiths, W. E., & Judge, G. G. (2010). Econometria. Tradução Alfredo Alves de Farias. 3ª. São Paulo: Saraiva. Recuperado em 08 fevereiro, 2022 de https://integrada.minhabiblioteca.com.br/#/books/9788502109735/.

Hyndman, R. J., & Athanasopoulos, G. (2021) Forecasting: principles and practice. 3ª. Melbourne: OTexts. Recuperado em 07 agosto, 2022 de https://otexts.com/fpp3.

Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2022). forecast: Forecasting functions for time series and linear models. R package version 8.16, Recuperado em 07 fevereiro, 2022 de https://pkg.robjhyndman.com/forecast/.

Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, Vol. 55, nº. 2, pp.163-172. https://doi.org/10.2307/1403192

Joenssen, D. W., & Vogel, J. (2014). A power study of goodness-of-fit tests for multivariate normality implemented in R. Journal of Statistical Computation and Simulation, Vol. 84, nº. 5, pp. 1055-1078. https://doi.org/10.1080/00949655.2012.739620

Kaur, A., & Kumar, R. (2015). Comparative Analysis of Parametric and Nonparametric Tests. Journal of Computer and Mathematics Sciences, Vol. 6, pp. 336-342.

Leotti, V. B., Birck, A. R., & Riboldi, J. (2005). Comparação dos Testes de Aderência à Normalidade Kolmogorov-smirnov, Anderson-Darling, Cramer-Von Mises e Shapiro-Wilk por Simulação. Anais do 11º Simpósio de Estatística Aplicada à Experimentação Agronômica.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American statistical Association, Vol. 62, nº. 318, pp. 399-402. https://doi.org/10.1080/01621459.1967.10482916

Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, Vol. 65, nº. 2, pp. 297-303. https://doi.org/10.1093/biomet/65.2.297

Lobato, I. N., & Velasco, C. (2004). A simple test of normality for time series. Econometric Theory, Vol. 20, nº. 4, pp. 671-689. https://doi.org/10.1017/S0266466604204030

Lopes, M. de M., Branco, V. T. F. C., & Soares, J. B. (2013). Utilização dos testes estatísticos de Kolmogorov-Smirnov e Shapiro-Wilk para verificação da normalidade para materiais de pavimentação. Revista dos Transportes, Vol. 21, nº. 1, pp. 59-66. https://doi.org/10.4237/transportes.v21i1.566

Mattos, V. L. D. de. (2004). Identificação de Efeitos de Dispersão em Experimentos com Poucas Replicações. Tese de doutorado. Universidade Federal de Santa Catarina.

Morettin, P. A., & Toloi, C. M. C. (2018). Análise de séries temporais: Modelos lineares univariados. 3ª. São Paulo: Edgard Blucher.

Nunes, G. S., Mattos, V. L. D. de, & Konrath, A. C. (2021). Considerações sobre teste de normalidade utilizados pelo software GRETL. In Gonçalves, M. C. S., & Jesus, B. G. (Org.). Contemporânea, Vol. 22, pp. 174-178.

Öztuna, D., Elhan, A. H., & Tüccar, E. (2006). Investigation of Four Different Normality Tests in Terms of Type 1 Error Rate and Power under Different Distributions. Turkey Journal of Medical Science, Vol. 36, nº. 3, pp. 171-176.

Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., & Cornilly, D. (2020). Package PerformanceAnalytics. Recuperado em 15 setembro, 2021 de https://cran.r-project.org/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf.

Pino, F. A. (2014). A Questão da Não-Normalidade: uma revisão. Revista de Economia Agrícola, Vol. 61, nº. 2, pp. 17-33.

Pya, N., Voinov, V., Makarov, R., & Voinov, Y. (2016). Package ‘mvnTest’. Recuperado em 21 fevererio, 2022 de https://cran.r-project.org/web/packages/mvnTest/mvnTest.pdf.

Razali, N. M., & Yap, B. W. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, Vol. 2, nº. 1, pp. 21-33.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperada em 08 fevereiro, 2022 de https://www.R-project.org/.

Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of clinical epidemiology, Vol. 98, pp. 146-151. https://doi.org/10.1016/j.jclinepi.2017.12.006

Seier, E. (2002). Comparison of tests for univariate normality. InterStat Statistical Journal, Vol. 1, pp. 1-17.

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (complete samples). Biometrika, Vol. 52, pp. 591-611. https://doi.org/10.2307/2333709

Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American statistical Association, Vol. 69, nº. 347, pp. 730-737. https://doi.org/10.1080/01621459.1974.10480196

Trapletti, A., & Hornik, K. (2020) tseries: Time Series Analysis and Computational Finance. Recuperada em 15 setembro, 2021 de https://CRAN.R-project.org/package=tseries.

Tsay, R. (2013). Package ‘FinTS’. Recuperada em 15 setembro, 2021 de http://www2.uaem.mx/r-mirror/web/packages/FinTS/FinTS.pdf.

Wickham, P. (2015). Package ‘normwhn.test’. Recuperada em 23 fevereiro, 2022 de https://cran.r-project.org/web/packages/normwhn.test/normwhn.test.pdf.

Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, Vol. 81, n. 12, pp. 2141-2155. https://doi.org/10.1080/00949655.2010.520163

Yiğit, S., & Mendeş, M. (2016). Usage of multidimensional scaling technique for evaluation performances of multivariate normality tests. British Journal of Applied Science & Technology, Vol. 16, pp. 1-8.

Zeileis, A., & Hothorn, T. (2002). Diagnostic Checking in Regression Relationships. R News, Vol. 2, Issue 3, pp. 7–10. Recupearada em 15 setembro, 2021 de https://CRAN.R-project.org/doc/Rnews/.

Downloads

Published

2023-04-03

How to Cite

Cardoso, F. C., Berri, R. A., Lucca, G., Borges, E. N., & Mattos, V. L. D. de. (2023). Normality tests: a study of residuals obtained on time series tendency modeling. Exacta. https://doi.org/10.5585/2023.22928

Most read articles by the same author(s)