Rice husk as a source of energy in companies benefiting from the grain

Authors

  • Amanda Moreira Lima Universidade de Santa Cruz do Sul
  • Fabiane Taís Telöken Universidade de Santa Cruz do Sul
  • Régis Henrique Hermes Universidade de Santa Cruz do Sul
  • Jorge André Ribas Moraes Universidade de Santa Cruz do Sul
  • André Luiz Emmel Silva Universidade de Santa Cruz do Sul

DOI:

https://doi.org/10.5585/exactaep.v17n4.8576

Keywords:

Biomass, Alternative energies, Rice husk

Abstract

Biomass is the organic matter that can be used for energy production. The rice husk has characteristics that allow its use for this purpose. Thus, this study aimed to verify the fate of the rice husk generated by companies that benefit the grain in the region of the Rio Pardo Valley – RS – Brazil, and its situation regarding environmental certification. It was identified that only two companies use the bark in their processes, and the rest sell or donate the waste to third parties. In addition, only one of them is certified. It was concluded that, despite being a good option for clean energy, waste reuse and cost reduction, not all industries use the bark because of low knowledge and lack of interest in the subject. It has also been shown that only large companies seek certification of their processes as a consequence of the broader and more demanding market.

Downloads

Download data is not yet available.

References

António, J.; Tadeu, A.; Marques, B.; Almeida, J. A. S. & Pinto, V. (2018). Application of rice husk in the development of new composite boards. Construction and Building Materials, v. 176, p. 432-439.

Bharath, M.; Raghavan, V.; Prasad, B. V. S. S. S. & Chakravarthy, S. R. (2018). Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor. Applied Thermal Engineering, v. 137, p. 608-615.

Brasil, D. S.; Martins, M. P.; Nakashima, G. T. & Yamaji, F. M. (2015). Use of sugarcane bagasse and candeia waste for solid biofuels production. Floresta, Curitiba, PR, v. 45, n. 1, p. 185-192.

Coltro, L.; Marton, L. F. M.; Pilecco, F. P.; Pilecco, A. C. & Mattei, L. F. (2017). Environmental profile of rice production in Southern Brazil: A comparison between irrigated and subsurface drip irrigated cropping systems. Journal of Cleaner Production, v. 153, n. 1, p. 491-505.

Costa, J. A. S. & Paranhos, C. M. (2018). Systematic evaluation of amorphous silica production from rice husk ashes. Journal of Cleaner Production, v. 192, p. 688-697.

FEE - Fundação de Economia e Estatítica (2018). Perfil Sócio Econômico COREDE Vale do Rio Pardo. Porto Alegre, 2016. Disponível em: <https://www.fee.rs.gov.br/perfil-socioeconomico/coredes/detalhe/?corede=Vale+do+Rio+Pardo>. Acesso em 05 jan 2018.

Fernandes, I. J.; Calheiro, D.; Kieling, A. G.; Moraes, C. A. M.; Rocha, T. L. A. C.; Brehm, F. A. & Modolo, R. C. E. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel. v. 165, p. 351-359.

Gil, A. C. (2017). Como elaborar projetos de pesquisa. 6. ed. São Paulo: Atlas.

IBGE – Instituto Brasileiro de Geografia e Estatística. (2018). Produção Agrícola Municipal (1974 a 2016). Tabela 5457 - Área plantada ou destinada à colheita, área colhida, quantidade produzida, rendimento médio e valor da produção das lavouras temporárias e permanentes. Acesso em 05 jan 2018. Disponível em: https://sidra.ibge.gov.br/Tabela/5457#resultado

IRGA - Instituto Rio-Grandense do Arroz. (2018). Censo da Lavoura de Arroz Irrigado do Rio Grande do Sul – Safra 2016/2017. Porto Alegre, 2017. Disponível em: http://www.irga.rs.gov.br/upload/20170713143631produtividade_municipios_safra_16_17_final.pdf . Acesso em 05 jan 2018.

Jeer, M.; Suman, K.; Maheswari, T. U.; Voleti, S. R. & Padmakumari, A. P. (2018). Rice husk ash and imidazole application enhances silicon availability to rice plants and reduces yellow stem borer damage. Field Crops Research, v. 224, p. 60-66.

Lieu, Y. S. Chang, Y. C. & Chen, H. H. (2018). Synthesis of silver nanoparticles by using rice husk extracts prepared with acid–alkali pretreatment extraction process. Journal of Cereal Science, v. 82, p. 106-112.

Lim, J. S.; Manan, Z. A.; Alwi, S. R. W. & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, v. 16, n. 5, p. 3084-3094.

Lorenzett, D. B.; Neuhaus, M. & Schwab, N. T. (2012). Gestão de resíduos e a indústria de beneficiamento de arroz. Revista Gestão Industrial, v. 8, n. 1, p. 219-232.

Lucca, A. S.; Oliveira, P. N.; Schalcher, L. F. C. & Moraes, L. F. B. (2017). Indicadores de design para a valorização dos resíduos da construção civil, da indústria sucroalcooleira e da rizicultura no maranhão. Revista Gestão Industrial, v. 13, n. 1, p. 157-175.

Mohammed, I. Y.; Lim, C. H.; Kazi, F. K.; Yusup, S.; Lam, H. L. & Abakr, Y. A. (2017). Co-pyrolysis of Rice Husk with Underutilized Biomass Species: A Sustainable Route for Production of Precursors for Fuels and Valuable Chemicals. Waste and Biomass Valorization, v. 8, n. 3, p. 911-921.

Mota, K. I. A.; Rodrigues, L. B. O.; Santana, N. B. & Amarante Segundo, G. S. (2017). Biomass production from biomass: prospecting patents in Brazil. Revista GEINTEC. v. 7, n. 4, p. 4089-4099.

Ni, M.; Leung, D. Y. C.; Leung, M. K. H. & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, v. 87, p. 461-472.

Ninduangdee, P. & Kuprianov, V. I. (2018). Fluidized bed co-combustion of rice husk pellets and moisturized rice husk: The effects of co-combustion methods on gaseous emissions. Biomass and Bioenergy, v. 112, p. 73-84.

Nunes, F. A.; Seferin, M.; Maciel, V. G.; Flôres, S. H. & Ayub, M. A. Z. (2016). Life cycle greenhouse gas emissions from rice production systems in Brazil: A comparison between minimal tillage and organic farming. Journal of Cleaner Production, v. 139, p. 799-809.

Padhi, R. S.; Patra, R. K.; Mukharjee, B. B. & Dey, T. (2018). Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete. Construction and Building Materials, v. 173, p. 289-297.

Pakravan, H. R.; Jamshidi, M. & Jeddi, A. A. A. (2018). Combination of ground rice husk and polyvinyl alcohol fiber in cementitious composite. Journal of Environmental Management, v. 215, p. 116-122.

Preilipper, U. E. M.; Dalfovo, W. C. T.; Zapparoli, I. D.; Maroubo, L. A. & Mainardes, E. L. (2016). Aproveitamento do resíduo madeireiro na produção de energia termoelétrica no município de Marcelândia-MT. Desenvolv. Meio Ambiente, v. 36, p. 411-428.

Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, v. 53, p. 1468-1485.

Santos, A. R. (2007). Metodologia científica: a construção do conhecimento. 7. ed. Rio de Janeiro: Lamparina.

Satayeva, A. R.; Howell, C. A.; Korobeinyk, A. V.; Jandosov, J.; Inglezakis, V. J.; Mansurov, Z. A. & Mikhalovsky, S. V. (2018). Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Science of The Total Environment, v. 630, p. 1237-1245.

Schirmer, W. N.; Ferreira, I. T. M.; Ribeiro, C. B.; Pavanello, G. P.; Machado, G. O. & Rodrigues, P. R. P. (2017). Caracterização de biomassa residual de fábrica de papel-cartão para aproveitamento energético. Revista em Agronegócio e Meio Ambiente, v. 10, n. 4, p. 1113-1132.

Silva, R. L. & Silva, A. M. P. (2016). Bioenergia da Biomassa Residual: Potencial Energético da Combustão da Casca de Arroz em Dourados-MS e Região. Revista Brasileira de Energias Renováveis, v. 5, n. 1, p. 91-105.

Xu, C.; Zhong, A.; Li, X.; Wang, C.; Sahu, A.; Xu, H.; Lattimore, T.; Zhou, K. & Huang, Y. (2017). Laminar burning characteristics of upgraded biomass pyrolysis fuel derived from rice husk at elevated pressures and temperatures. Fuel, v. 210, p. 249-261.

Zhang, H.; Ding, X.; Chen, X.; Ma, Y.; Wang, Z. & Zhao, X. (2015). A new method of utilizing rice husk: Consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. Journal of Hazardous Materials, v. 291, p. 65-73.

Zhang, S.; Chen, T. & Xiong, Y. (2017). Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica. Waste and Biomass Valorization, p. 1-9.

Zhang, S.; Su, Y.; Xu, D.; Zhu, S. & Liu, X. (2018a). Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk. Energy, v. 149, p. 804-813.

Zhang, S.; Zhu, S.; Zhang, H.; Chen, T. & Xiong, Y. (2018b). Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment. Journal of Analytical and Applied Pyrolysis, v. 133, p. 91-96.

Published

2019-10-15

How to Cite

Lima, A. M., Telöken, F. T., Hermes, R. H., Moraes, J. A. R., & Silva, A. L. E. (2019). Rice husk as a source of energy in companies benefiting from the grain. Exacta, 17(4), 375–382. https://doi.org/10.5585/exactaep.v17n4.8576