A country-level multi-objective optimization model for a sustainable steel supply chain
DOI:
https://doi.org/10.5585/2024.22996Palavras-chave:
sustainable supply chain design, multi-objective optimization, steel industry, genetic algorithmsResumo
Steel supply chains have been pushed to consider environmental and social aspects, other than financial, however, in the context of Operational Research, the few papers proposing mathematical formulations and algorithms tackle only few dimensions of the problem. This study proposes a solution for sustainable steel production by formulating a multi-objective, multi-level, multi-modal, multi-product, and multi-period model and also devising an evolutionary algorithm for the problem. The results provide a Pareto front mapping the conflicting nature of economic, environmental and social objectives; show how changes in the production technology and transportation mode impact the objectives, and how locations with social vulnerability influence the decision of where and when to locate facilities. This paper provides a broad-ranging formulation and the results show its potential to help decision makers of the steel supply chain to make decisions considering not only economic factors.
Downloads
Referências
ANTT (Brazilian National Agency of Land Transportation), 2012. National Inventory of Atmospheric Emissions from Rail Cargo Transport. Brasilia- Brazil. [in Portuguese].
Arampantzi, C., & Minis, I. (2017). A new model for designing sustainable supply chain networks and its application to a global manufacturer. Journal of Cleaner Production, 156, 276-292. Doi: 10.1016/j.jclepro.2017.03.164
Ates, S. A. (2015). Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system. Energy, 90, 417-428. Doi: 10.1016/j.energy.2015.07.059
Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. Doi: 10.1016/j.ejor.2017.10.036
Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European journal of operational research, 233(2), 299-312. Doi: 10.1016/j.ejor.2013.09.032
Castro Vivas, R., Sant’Anna, A. M. O., Esquerre, K. P. O., & Freires, F. G. M. (2019). Integrated method combining analytical and mathematical models for the evaluation and optimization of sustainable supply chains: A Brazilian case study. Computers & Industrial Engineering, 139, 105670. Doi: 10.1016/j.cie.2019.01.044
Chalmardi, M. K., & Camacho-Vallejo, J. F. (2019). A bi-level programming model for sustainable supply chain network design that considers incentives for using cleaner technologies. Journal of Cleaner Production, 213, 1035-1050. Doi: 10.1016/j.jclepro.2018.12.197
Climate Observatory, 2020. System for estimating greenhouse gas emissions. URL http://plataforma.seeg.eco.br/ (accessed 5.11.20). [in Portuguese].
Climate Watch, 2020. Climate Watch Data. Url: https://www.climatewatchdata.org/ghg-emissions (accessed 30.12.21).
CNT (National Confederation of Transport), 2019. Statistical Bulletin. Brasilia. [in Portuguese].
Conejo, A. N., Birat, J. P., & Dutta, A. (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of environmental management, 259, 109782. Doi: 10.1016/j.jenvman.2019.109782
Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 235(3), 594-615.
Elkington, J. (2013). Enter the triple bottom line. In The triple bottom line (pp. 23-38). Routledge.
EPL (Planning and Logistics Company), 2018. National Logistics Plan Report – 2025. Brasilia. [in Portuguese]
Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, (United Kingdom) 54, 11-32. 54, Doi: 10.1016/j.omega.2015.01.006
Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR spectrum, 28(3), 337-354. Doi: 10.1007/s00291-005-0029-9
Hasanbeigi, A., Arens, M., Cardenas, J. C. R., Price, L., & Triolo, R. (2016). Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling, 113, 127-139. Doi: 10.1016/j.resconrec.2016.06.008
IABr (Brazil Steel Institute), 2018. Sustainability Report. Rio de Janeiro. [in Portuguese].
IABr (Brazil Steel Institute), 2019. The Steel Industry in Numbers. Rio de Janeiro. [in Portuguese].
IABr (Brazil Steel Institute), 2021. URL: http://www.acobrasil.org.br [in Portuguese].
IPEA (Institute for Applied Economic Research), 2020. Atlas of Social Vulnerability. URL http://ivs.ipea.gov.br (accessed 3.27.20). [in Portuguese].
Kadziński, M., Tervonen, T., Tomczyk, M.K., Dekker, R., 2017. Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega (United Kingdom) 68, 168–184. Doi: 10.1016/j.omega.2016.07.003
Khan, A.S., Khalid, Q.S., Naeem, K., Ahmad, R., Khan, R., Saleem, W., Pruncu, C.I., 2021. Application of exact and multi-heuristic approaches to a sustainable closed loop supply chain network design. Sustain. 13, 1–25. Doi: 10.3390/su13052433
Khorasani, S. T., & Almasifard, M. (2018). The development of a green supply chain dual-objective facility by considering different levels of uncertainty. Journal of Industrial Engineering International, 14, 593-602.
Khoshfarman Borji, M., Sayadi, A. R., & Nikbakhsh, E. (2023). A Novel Sustainable Multi-objective Optimization Model for Steel Supply Chain Design Considering Technical and Managerial Issues: a Case Study. Journal of Mining and Environment, 14(1), 295-319.
Macowski, D.H., Bonfim-Rocha, L., Orgeda, R., Camilo, R., Ravagnani, M.A.S.S., 2020. Multi-objective optimization of the Brazilian industrial sugarcane scenario: a profitable and ecological approach. Clean Technol. Environ. Policy. Doi: 10.1007/s10098-019-01802-0
Mc Loughlin, K., Lewis, K., Lascelles, D., & Nudurupati, S. (2021). Sustainability in supply chains: reappraising business process management. Production Planning & Control, 1-34. Doi: 10.1080/09537287.2021.1884764
Ministry of Environment, Brazil, 2013. National Inventory of Atmospheric Emissions by Road Motor Vehicles: Base year 2012.
Brasília. [PtBr].
Moreno-Camacho, C. A., Montoya-Torres, J. R., Jaegler, A., & Gondran, N. (2019). Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. Journal of cleaner production, 231, 600-618. Doi : 10.1016/J.JCLEPRO.2019.05.278
Mota, B., Gomes, M.I., Carvalho, A., Barbosa-Povoa, A.P., 2018. Sustainable supply chains: An integrated modeling approach under uncertainty. Omega (United Kingdom) 77, 32–57. Doi: 10.1016/j.omega.2017.05.006
Nielsen, H. (2017). Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective. Applied Energy, 185, 1732-1743. Doi: 10.1016/j.apenergy.2015.12.125
Noh, J., & Kim, J. S. (2019). Cooperative green supply chain management with greenhouse gas emissions and fuzzy demand. Journal of Cleaner Production, 208, 1421-1435. Doi: 10.1016/j.jclepro.2018.10.124
Resat, H. G., & Unsal, B. (2019). A novel multi-objective optimization approach for sustainable supply chain: A case study in packaging industry. Sustainable production and consumption, 20, 29-39.
Rezapour, S., Zanjirani Farahani, R., & Drezner, T. (2017). Strategic design of competing supply chain networks for inelastic
demand. Journal of the Operational Research Society, 62(10), 1784-1795. Doi: 10.1057/jors.2010.146
Sahebjamnia, N., Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., 2018. Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks. J. Clean. Prod. 196, 273–296. Doi: 10.1016/j.jclepro.2018.05.245
Sarkar, B., Omair, M., & Choi, S. B. (2018). A multi-objective optimization of energy, economic, and carbon emission in a production model under sustainable supply chain management. Applied Sciences, 8(10), 1744.
Seydanlou, P., Jolai, F., Tavakkoli-Moghaddam, R., & Fathollahi-Fard, A. M. (2022). A multi-objective optimization framework for a sustainable closed-loop supply chain network in the olive industry: Hybrid meta-heuristic algorithms. Expert Systems with Applications, 203, 117566.
SICETEL (National Union of Ferrous Metals Drawing and Rolling Industries), 2019. Steel Market Analysis. São Paulo. [in Portuguese].
Sindifer (Sindicato da Indústria do Ferro no Estado de Minas Gerais), 2019. Annual Statistics. Belo Horizonte. Brazil.
Tosarkani, B. M., & Amin, S. H. (2018). A possibilistic solution to configure a battery closed-loop supply chain: multi-objective approach. Expert systems with applications, 92, 12-26. Doi: 10.1016/j.eswa.2017.09.039
Tseng, M. L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. Doi: 10.1016/j.resconrec.2018.10.009
UN (United Nations), 2015. Transforming Our World: the 2030 Agenda for Sustainable Development.
Usiminas, 2020. 4Q19 Earnings Release. [in Portuguese].
Vafaeenezhad, T., Tavakkoli-Moghaddam, R., & Cheikhrouhou, N. (2019). Multi-objective mathematical modeling for sustainable supply chain management in the paper industry. Computers & Industrial Engineering, 135, 1092-1102.
Yadav, V. S., Tripathi, S., & Singh, A. R. (2019). Bi-objective optimization for sustainable supply chain network design in omnichannel. Journal of Manufacturing Technology Management, 30(6), 972-986.
Zarbakhshnia, N., Soleimani, H., Goh, M., & Razavi, S. S. (2019). A novel multi-objective model for green forward and reverse logistics network design. Journal of Cleaner Production, 208, 1304-1316. Doi: 10.1016/j.jclepro.2018.10.138
Zhang, S., Lee, C. K. M., Wu, K., & Choy, K. L. (2016). Multi-objective optimization for sustainable supply chain network design
considering multiple distribution channels. Expert Systems with Applications, 65, 87-99.
Zhang, X., Zhao, G., Qi, Y., & Li, B. (2019). A robust fuzzy optimization model for closed-loop supply chain networks considering sustainability. Sustainability, 11(20), 5726. Doi: 10.3390/su11205726
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Autores
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.