Evolutionary algorithms application in the optimization of a cut of a paper supply chain

Authors

DOI:

https://doi.org/10.5585/exactaep.2021.16318

Keywords:

Evolutionary algorithms, Particle swarm optimization, Genetic algorithm, Supply chain

Abstract

In a global scenario getting more and more competitive for companies, the concern about the reduction of operational costs is growing. Therefore, the adoption of optimization tools by companies is constant, since they search, in mathematical methods, opportunities to improve current processes. This article aims to evaluate the performance of two evolutionary algorithms in the costs optimization of a supply chain, focusing on materials acquisition costs, storing costs and missed sales costs. For this study, it was analyzed a part of a paper supply chain, considering its product with the biggest income, its first layer suppliers and its first layer clients. One of the algorithms was effective compared to the company’s current purchasing policy, bringing a 3,9%, on the other hand, the other one presented a less favorable result to the company, raising its costs in 74,4%. The optimal solution resulted in a saving of 7,2% compared to what the company practiced.

Downloads

Download data is not yet available.

Author Biographies

Mauricio Mattos, Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Graduação em Engenharia de Produção. Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Mariana Kleina, Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Doutorado em Métodos Numéricos em Engenharia. Universidade Federal do Paraná – UFPR.
Curitiba, Paraná

Marcos Augusto Mendes Marques, Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Doutorado em Métodos Numéricos em Engenharia. Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Wiliam de Assis Silva, Universidade Federal do Paraná – UFPR. Curitiba, Paraná

Mestrado em Engenharia de Produção. Universidade Federal do Paraná – UFPR. Curitiba, Paraná

References

Afify, B., Ray, S., Soeanu, A., Awasthi, A., Debbabi, M., & Allouch, M. (2019). Evolutionary learning algorithm for reliable facility location under disruption. Expert Systems with Applications, 115, 223-244.

Araújo, S. A. de, Librantz, A. F. H., & Alves, W. A. L. (2009). Algoritmos genéticos na estimação de parâmetros em gestão de estoque. Exacta, 7(1), 21-29.

Ballou, R. H. (2006). Gerenciamento da cadeia de suprimentos/logística empresarial. Porto Alegre: Bookman.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic Programming - An introduction. São Francisco: Morgan Kaufmann.

Barreto, J. M. (2001). Inteligência artificial no limiar do século XXI. Florianópolis: Duplic.

Braz, A. C., De Mello, A. M., Gomes, L. A. V., Nascimento, P. T. N. (2018). The bullwhip effect in closed-loop supply chains: A systematic literature review. Journal of Cleaner Production, 202, 376-389.

Boctor, F., & Bolduc, M. (2018). The inventory replenishment planning and staggering problem: a bi-objective approach. 4OR, 16(2), 199-224.

Bushuev, M. A. (2018). Delivery performance improvement in two-stage supply chain. International Journal of Production Economics, 195, 66-73.

Chopra, S. & Meindl, P. (2010) Gerenciamento da cadeia de suprimentos. São Paulo: Pearson.

Chopra, S., & Meindl, P. (2012). Supply chain management: strategy, planning and operation. 5 ed. Prentice Hall PTR, UpperSaddle River.

Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. Proceedings of the IEEE Congress on Evolutionary Computation, 1, 81-86.

Falcone, M. A. G. (2004). Estudo comparativo entre algoritmos genéticos e evolução diferencial para otimização de um modelo de cadeia de suprimento simplificada. Dissertação de mestrado, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil.

Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research, 247(1), 1-15.

Faustino, C. A., Amorim, M. H. S., Oliveira, L. C. de, & Gohr, C. F. (2018). Colaboração em cadeias de suprimentos: revisão, análise e lacunas da literatura. Exacta, 16(1), 55–70.

Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. São Francisco: Morgan Kaufmann.

Lambert, D. M., Cooper, M. C., & Pagh, J. D. (1998). Supply chain management: implementation issues and research opportunities. The International Journal of Logistics Management, 9(2), 1-19.

Lei, L., DeCandia, L., Oppenheim, R., & Zhao, Y. (2017). Managing supply chain operations. Singapore: World Scientific.

Lu, P., Wu, M., Tan, H., Peng, Y., & Chen, C. (2018). A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems. Journal of Intelligent Manufacturing, 29, 19-34.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Nova Iorque: Springer-Verlag.

Mital, M., Del Guidice, M., & Papa, A. (2017). Comparing supply chain risks for multiple product categories with cognitive mapping and Analytic Hierarchy Process. Technological Forecasting and Social Change, 119, 128-139.

Munir, M., Jajja, M. S. S., Chatha, K. A., & Farooq, S. (2020). Supply chain risk management and operational performance: The enabling role of supply chain integration. International Journal of Production Economics, 227, 1-14.

Pires, S. R. I. (2009). Gestão da cadeia de suprimentos. São Paulo: Atlas.

Ramish, A., & Aslam, H. (2016). Measuring supply chain knowledge management (SCKM) performance based on double/triple loop learning principle. International Journal of Productivity and Performance Management, 65(5), 704-722.

Sakawa, M. (2001). Genetic algorithms and fuzzy multiobjective optimization. Norwell: Kluwer Academic Publishers.

Silva, L. A. W. (2008). Otimização de uma cadeia de suprimentos usando a metaheurística enxame de partículas. Dissertação de mestrado, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil.

Slack, N. (1993). Vantagem competitiva em manufatura. São Paulo: Atlas.

Teles, R. M. (2011). Um estudo de técnicas da inteligência artificial aplicadas na distribuição de recursos em áreas geográficas. Dissertação de mestrado, Universidade Federal de Goiás, Goiânia, GO, Brasil.

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408.

Wu, D., Huo, J., Zhang, G., & Zhang, W. (2018). Minimization of Logistics Cost and Carbon Emissions Based on Quantum Particle Swarm Optimization. Sustainability, 10(10), 1-15.

Xu, M., Cui, Y., Hu, M., Xu, X., Zhang, Z., Liang, S., & Qu, S. (2019). Supply Chain Sustainability Risk and Assessment. Journal of Cleaner Production, 225, 857-867.

Yavari, M., & Isvandi, S. (2018). Integrated decision making for parts ordering and scheduling of jobs on two-stageassembly problem in three level supply chain. Journal of Manufacturing Systems, 46, 137-151.

Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 1-12.

Published

2021-07-23

How to Cite

Mattos, M., Kleina, M., Marques, M. A. M., & Silva, W. de A. (2021). Evolutionary algorithms application in the optimization of a cut of a paper supply chain. Exacta, 19(3), 706–727. https://doi.org/10.5585/exactaep.2021.16318

Most read articles by the same author(s)