Calculating models for total factor productivity measurement

Authors

DOI:

https://doi.org/10.5585/exactaep.2021.18140

Keywords:

productivity, efficiency, countries

Abstract

Productivity measures the level of efficiency a particular economy presents in producing goods and services. Thus, increasing productivity is the fastest route to achieve economic growth and social well-being. This article aims to estimate and compare four Total Factor Productivity (TFP) measurement models. The models chosen were: Olley & Pakes - OP (1996); Levinsohn & Petrin – LP (2003); Wooldridge - Wool (2009); and Ackerberg, Caves & Frazer - ACF (2015). Per capita energy consumption was employed as the intermediate input. The results suggest that the ACF (2015) model is an improvement form the OP and LP models, while presenting statistically significant results. The Wool (2009) model is also an improvement and, once more, presented similar results. Considering the ACF model presents high dispersion, the Wool model is the preferred TFP measurement model.

Downloads

Download data is not yet available.

Author Biographies

Naijela Janaina Costa Silveira, Federal University of São Carlos / São Carlos, SP

Doutora em Engenharia de Produção pela Universidade Federal de São Carlos - UFSCar. Atuou na linha de pesquisa de Gestão de Tecnologia e Inovação por meio de ferramentas econométricas e Análise Envoltória de Dados. Possui ênfase em análise de dados em painel e regressão por limiar. Possui Mestrado em Engenharia de Produção pela Universidade Federal de São Carlos e graduação em Engenharia de Produção Agroindustrial pela Universidade Estadual do Paraná (2013).

Diogo Ferraz, Federal University of Ouro Preto (UFOP) / Ouro Preto, MG

Doutor em Engenharia de Produção na Universidade de São Paulo (USP). Ph.D. candidate em Economia na Universität Hohenheim (Departamento de Economia - Economia da Inovação, Stuttgart/Alemanha). Economista e mestre em Engenharia de Produção, possui experiência em modelos econométricos e Data Envelopment Analysis (DEA). Utiliza base de dados como a PNAD/IBGE, RAIS/CAGED do Ministério do Trabalho e Emprego e dados do Banco Mundial, por meio de softwares como o Stata e o Matlab. A área de pesquisa relaciona questões sobre complexidade econômica, inovação, desenvolvimento humano e sustentabilidade. Em 2018, foi pesquisador visitante na Universität Hohenheim. Membro dos grupos de pesquisa: Análise de Desempenho de Sistemas Produtivos (USP) e Sustentabilidade e Desenvolvimento Humano (UNESP-Bauru).

Diego Scarpa de Mello, Federal University of São Carlos / São Carlos, SP

Possui graduação em Administração e MBA em Finanças. Atualmente é mestrando no Departamento de Engenharia de Produção da UFSCar com foco em transferência de tecnologia, foreign direct investment e risco dos mercados financeiros.

Eduardo Polloni-Silva, Federal University of São Carlos / São Carlos, SP

Doutorando em Engenharia de Produção pela Universidade Federal de São Carlos (UFSCar-São Carlos). Eduardo também possui Mestrado pela UFSCar e graduação pela Universidade Federal da Grande Dourados (UFGD). Sua pesquisa envolve métodos quantitativos e econometria, normalmente aplicados à problemas macroeconômicos. Investiga, em geral, os efeitos do Investimento Estrangeiro Direto (IED) no Brasil em diferentes perspectivas (e.g. produtividade, desenvolvimento humano e sustentabilidade). Possui experiência internacional e em gestão.

Herick Fernando Moralles, Federal University of São Carlos / São Carlos, SP

Bachelor in Economicas from Universidade Estadual Paulista Júlio de Mesquita Filho (2007) and máster and Ph.D. in Production Engineering from Universidade de São Paulo (2010). Visiting scholar at University of Barcelona (2018). Professor Moralles has experience in Econometric and Statistical Methods and Models, acting on the following subjects of investigation: FDI, Human development, productivity, R&D policy.

Daisy Aparecida do Nascimento Rebelatto, University of Sao Paulo / São Paulo, SP

Possui graduação em Engenharia Civil pela Universidade Federal de São Carlos (1984), mestrado em Engenharia Civil pela Universidade de São Paulo (1992) e doutorado em Engenharia Mecânica pela Universidade de São Paulo (1999). Atualmente é professor associado da Universidade de São Paulo. Tem experiência na área de Engenharia de Produção, com ênfase em Engenharia Econômica, atuando principalmente nos seguintes temas: energia, infraestrutura produtiva, análise de eficiência, análise por envoltória de dados e políticas públicas.

References

Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2007). The environment and directed technical change. American Economic Review, 102(1), 131–166. http://doi.org/10.1257/aer.102.1.131

Ackerberg, D., Caves, K., & Frazer, G. (2015). Identification Properties of Recent Production Function Estimators. Econometrica, 83(6), 2411-2451. https://doi.org/10.3982/ECTA13408

Aghion, P., & Howitt, P. (2005). Endogenous growth theory. Cambridge, MA: MIT Press, 1998.

Akinlo, A. E., & Adejumo, O. O. (2016). Determinants of Total Factor Productivity Growth in Nigeria, 1970–2009. Global Business Review, 17(2), 257-270. https://doi.org/10.1177/0972150915619801

Alvim, C. F. (2009). A produtividade dos Fatores em Alguns Países. Economia & Energia, 73.

Arazmuradov, A., Martini, G., & Scotti, D. (2014). Determinants of total factor productivity in former Soviet Union economies: A stochastic frontier approach. Economic Systems, 38(1), 115-135. https://doi.org/10.1016/j.ecosys.2013.07.007

Ayres, R. U., & Warr, B. (2010). The Economic Growth Engine: How Energy and Work Drive Material Prosperity. Edward Elgar Publishing, Cheltenham, UK.

Azar, C., & Dowlatabadi, H. (1999). A review of technical change in assessment of climate policy. Annual Review of Energy and the Environment, 24(1), 513–544. https://doi.org/10.1146/annurev.energy.24.1.513

Beca, A. L., Shimabuku, E., Silva, A. M., Tanaka, W. Y., & Ferreira, W. P. (2019). Aplicação da teoria das restrições no transporte público: estudo de caso em uma linha de ônibus na cidade de São Paulo. Exacta, 17(2), 119-133. https://doi.org/10.5585/exactaep.v17n2.8230

Brooks, C. (2008). Introductory Econometrics for Finance. 2 ed. Chris Brooks The ICMA Centre, University of Reading.

Bhattacharya, M., Okafor, L. E., & Pradeep, V. (2021). International firm activities, R&D, and productivity: Evidence from Indian manufacturing firms. Economic Modelling, 97, 1-13.

https://doi.org/10.1016/j.econmod.2021.01.012

Buesa M., Heijs J., & Baumert, T. (2010). The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach. Research Policy, 39, 722–735. https://doi.org/10.1016/j.respol.2010.02.016

Cao, L., Qi, Z., & Ren, J. (2017). China's industrial total-factor energy productivity growth at sub-industry level: A two-step stochastic metafrontier Malmquist index approach. Sustainability (Switzerland), 9(8), 1384. https://doi.org/10.3390/su9081384

Castiglionesi, F., & Ornaghi, C. (2013). On the determinants of total factor productivity growth: Evidence from Spanish manufacturing firms. Macroeconomic Dynamics, 17(3), 501-530. https://doi.org/10.1017/S1365100511000332

Chen, L. H., Tang, L., & Ni, W. J. (2016). Analysis of total factor productivity between 2003 and 2014 in tertiary hospitals in Shanghai based on Malmquist index. Journal of Shanghai Jiaotong University (Medical Science), 36(6), 912-916. https://10.3969/j.issn.1674-8115.2016.06.025

Chen, S., & Golley, J. (2014). ‘Green’ productivity growth in China's industrial economy. Energy Economics, 44, 89-98. https://doi.org/10.1016/j.eneco.2014.04.002

Danska-Borsiak, B. (2018). Determinants of total factor productivity in Visegrad Group nuts-2 regions. Acta Oeconomica, 68(1), 31-50. https://doi.org/10.1556/032.2018.68.1.2

Dańska-Borsiak, B., & Laskowska, I. (2012). The Determinants of Total Factor Productivity in Polish Subregions. Panel Data Analysis. Comparative Economic Research, 15(4), 17-29. https://doi.org/10.2478/v10103-012-0023-9

Elmawazini, K. (2014). FDI Spillovers, Efficiency Change and Host Country Labor Productivity: Evidence from GCC Countries. Atlantic Economic Journal, 42(4), 399-411. https://doi.org/10.1007/s11293-014-9428-0

Felema, J., Raiher, A. P., & Ferreira, C. R. (2013). Agropecuária brasileira: desempenho regional e determinantes de produtividade. Revista de Economia e Sociologia Rural, 51(3), 555-574. https://doi.org/10.1590/S0103-20032013000300008

Feng, J. C., Huang, M. B., & Wang. M. (2018). Analysis of green total-factor productivity in China's regional metal industry: A meta-frontier approach. Resources Policy, 58, 219-229. https://doi.org/10.1016/j.resourpol.2018.05.008

Filho, V. A. V., & Moori, R. G. (2019). The mediating effect of resource based view (RBV) on the relationship between supply chain management and operational performance/O efeito mediador da resource based view (RBV) na relacao entre gestao da cadeia de suprimentos e desempenho operacional. Revista Exacta, 17(1), 111+. https://link.gale.com/apps/doc/A596402806/AONE?u=anon~c7263112&sid=googleScholar&xid=2e64b2a0

Fu, Q., & Ji, F. (2017). Total factor productivity of food manufacturing industry in China: A DEA-Malmquist index measurement. Revista de la Facultad de Ingenieria, 32(4), 1-8. https://doi.org/10.1080/01446193.2013.826371

Gao, Y., Zhang, M., & Zheng, J. (2021). Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions. China Economic Review, 65, 101576. https://doi.org/10.1016/j.chieco.2020.101576

Giovanis, E., & Ozdamar, O. (2015). Determinants of total factor productivity: Evidence from US Compustat firms and Triadic Patent Families. International Journal of Economics and Business Research, 10(3), 258-272. https://doi.org/10.1504/IJEBR.2015.071845

Girma, S. (2005). Absorptive Capacity and Productivity Spillovers from FDI: A Threshold Regression Analysis. Oxford Bulletin of Economics and Statistics, 67(03), 281-306. https://doi.org/10.1111/j.1468-0084.2005.00120.x

Harris, R., & Moffat, J. (2015). Plant-level determinants of total factor productivity in Great Britain, 1997–2008. Journal of Productivity Analysis, 44(1), 2015. https://doi.org/10.1007/s11123-015-0442-2

Hausmann R., Hidalgo, C. A., Bustos, S., Coscia, M., Simoes A., & Yildirim, M. A. (2014). The atlas of economic complexity: Mapping paths to prosperity: MIT Press.

Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570-10575. https://doi.org/10.1073/pnas.0900943106

Husniah H., & Supriatna A. K. (2016). Optimal number of fishing fleet for a sustainable fishery industry with a generalized logistic production function. Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM 2015, 7380211, 546-554. https://doi.org/10.1109/IESM.2015.7380211

Kim, S. (2016). Factor determinants of total factor productivity growth for the japanese manufacturing industry. Contemporary Economic Policy, 34(3), 572-586. https://doi.org/10.1111/coep.12152

Kim, S. (2011). Factor determinants of total factor productivity growth in the malaysian hotel industry: A stochastic frontier approach. Cornell Hospitality Quarterly, 52(1), 35-47. https://doi.org/10.1177/1938965509341286

Lenox, M., & King, A. (2004). Prospects for developing absorptive capacity through internal information provision. Journal of Strategic Management, 25(4), 331-345. https://doi.org/10.1002/smj.379

Levinsohn, J., Petrin, A. (2003). Estimating Production Functions Using Inputs to Control for Unobservables. Review of Economic Studies, 70, 317-342. https://doi.org/10.1111/1467-937X.00246

Liu, B. G., Wang, B., & Zhang, N. (2016). A coin has two sides: Which one is driving China’s green TFP growth? Economic Systems, 40(3), 481-498. https://doi.org/10.1016/j.ecosys.2015.12.004

Löschel, A. (2002). Technological change in economic models of environmental policy: a survey. Ecological Economics, 43(2), 105–126. https://doi.org/10.1016/S0921-8009(02)00209-4

Mation, L. (2013). Produtividade Total dos Fatores no Brasil: impactos na educação e comparações internacionais. Boletim Radar – IPEA, 28, 39-46. https://repositorio.ipea.gov.br/handle/11058/5335

Messa, A. (2013). Indicadores de produtividade: Uma breve revisão dos principais métodos de cálculo. Radar: Tecnologia, Produção e Comércio Exterior, 28. https://repositorio.ipea.gov.br/handle/11058/4045

Mirza, F. M., Rizvi, S. B., & Bergland, O. (2021). Service quality, technical efficiency and total factor productivity growth in Pakistan's post-reform electricity distribution companies. Utilities Policy, 68. https://doi.org/10.1016/j.jup.2020.101156

Mu, M., Tian, Y., & Duan, J. (2017). Impact of overseas listing on total factor productivity: A DEA-malmquist index measurement. Boletin Tecnico/Technical Bulletin, 55(4), 525-530.

Nelson, R., & Phelps, E. (1966). Investment in humans, technological diffusion, and economic growth. American Economic Review, 56(1/2), 69–75. https://www.jstor.org/stable/1821269

Olley, S., & Pakes, A. (1996). The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica, 64, 1263-1295. https://doi.org/10.3386/w3977

Otsuka, A. (2017). Regional determinants of total factor productivity in Japan: stochastic frontier analysis. Annals of Regional Science, 58(3), 579-596. https://doi.org/10.1007/s00168-017-0808-7

Otsuka, K., & Natsuda, K. (2016). The determinants of total factor productivity in the malaysian automotive industry: are government policies upgrading technological capacity? Singapore Economic Review, 61(4). https://doi.org/10.1142/S0217590815500460

Romer, P. M. (1990). Endogenous technological change. Journal of political Economy, 98(5, Part 2), S71-S102.

Sarbu, M. (2017). Does Social Media Increase Labour Productivity? Journal of Economics and Statistics, 237(2), 81–113. https://doi.org/10.1515/jbnst-2017-0104

Sheng, Y., & Song, L. (2012). China's iron and steel industry performance: Total factor productivity and its determinants. The Chinese Steel Industry's Transformation: Structural Change, Performance and Demand on Resources, 69-88. https://doi.org/10.4337/9781781006610.00010

Solow, R. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513

Solow, R. (1957). Technical Change and the Aggregate Production Function. Review of Economics and Statistics, 39(3), 312-320. https://doi.org/10.2307/1926047

Stern, D. I., & Kander, A. (2012). The role of energy in the industrial revolution and modern economic growth. Energy Journal, 33(3), 125. https://doi.org/10.5547/01956574.33.3.5

Tinbergen, J. (1942). A teoria do desenvolvimento econômico de longo prazo. Review of World Economics, 55(1), 511-549.

Vallejos, L., & Valdivia, L. (2000). Productivity growth in Peru: 1950 – 1998. Santiago: Interamerican Development Bank, 2000. (Serie de Documentos de Trabajo nº 355).

Vecchia, F. A. D., Volquind, R., Fernandes, E. S., Silveira, B. M., Santos, B. M., & Amaral, F. G. (2020). Lean practices in industrial production processes: innovations that provide reduction in costs and raw materials residues. Exacta, 18(1), 1-15.

Wei. W. W. L., Zhang, J. L., Wen, J. J., & Wang, S. (2020). TFP growth in Chinese cities: The role of factor-intensity and industrial agglomeration. Economic Modelling, 91, 534-549. https://doi.org/10.1016/j.econmod.2019.12.022

Wooldridge, J. M. (2009). On estimating firm-level production functions using proxy variables to control for unobservables. Economics Letters, 104, 112-114. https://doi.org/10.1016/j.econlet.2009.04.026

Zhang, Y., Song, Y., & Zou, H. (2020). Transformation of pollution control and green development: Evidence from China’s chemical industry. Journal of Environmental Management, 275, 111246. https://doi.org/10.1016/j.jenvman.2020.111246

Published

2023-06-12

How to Cite

Silveira, N. J. C., Ferraz, D., Mello, D. S. de, Polloni-Silva, E., Moralles, H. F., & Rebelatto, D. A. do N. (2023). Calculating models for total factor productivity measurement. Exacta, 21(2), 297–315. https://doi.org/10.5585/exactaep.2021.18140

Most read articles by the same author(s)