SUSTAINABLE RESEARCH METHODOLOGY ON THE EFFECT OF THE REUSE OF BLACK LIQUOR IN THE ALKALINE PRE-TREATMENT OF GARDEN RESIDUES FOR THE PRODUCTION OF BIOGAS
DOI:
https://doi.org/10.5585/geas.v8i3.15780Palavras-chave:
Metodologia, Sustentabilidade, Biogás, Metano, Lignina, Lignocelulose.Resumo
O biogás é uma importante fonte renovável de energia, que converte material orgânico em energia. A biomassa lignocelulósica surge como uma estratégia para aumentar a produção de biogás através de pré-tratamentos que fornecem matéria orgânica ao ambiente anaeróbio. Entre os pré-tratamentos químicos disponíveis, o alcalino é o mais utilizado, pois apresenta o maior rendimento na produção de biogás. No entanto, o efluente gerado (licor negro) é um subproduto alcalino que, se descartado irregularmente, pode causar problemas ambientais. Nesse contexto, o objetivo do presente estudo é apresentar a metodologia empregada para avaliar o efeito do pré-tratamento alcalino com solução de hidróxido de potássio (KOH) aplicado a resíduos de jardim na produção de biogás e a reutilização de licor negro como novo meio alcalino. O pré-tratamento foi dividido em sete bateladas subsequentes, com a primeira batelada composta por uma solução de KOH a 5% e substrato seco e triturado (resíduo de poda de jardim). Para as demais bateladas, o licor negro da fração líquida do processo de separação foi reutilizado. Os testes de Potencial Bioquímico de Metano (PBM) foram realizados com a fração peneirada em condições mesofílicas (35°C) por 25 dias, seguindo a norma alemã VDI 4630. Os resultados mostraram que a segunda batelada teve a maior produção de biogás (620 LN biogas/SV-1 kg) e uma eficiência de 30% quando comparado com o substrato não pré-tratado. Efeito positivo também foi observado no rendimento de biogás após a reutilização do licor negro duas vezes, apresentando uma eficiência média de 20%. Nesse sentido, o estudo demonstra que o reuso do licor negro remanescente do pré-tratamento com KOH é uma técnica viável e sustentável para o pré-tratamento de resíduos de jardim e contribui para a redução de custos em escala real.
Downloads
Referências
Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020
Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook. Retrieved from www.lemvigbiogas.com
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
Aslanzadeh, S., Berg, A., Taherzadeh, M. J., & Sárvári Horváth, I. (2014). Biogas production from N-Methylmorpholine-N-oxide (NMMO) pretreated forest residues. Applied Biochemistry and Biotechnology, 172(6), 2998–3008. https://doi.org/10.1007/s12010-014-0747-z
Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573. https://doi.org/10.1016/j.pecs.2007.11.001
Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106. https://doi.org/10.1016/j.rser.2014.04.047
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research, 2011, 787532. https://doi.org/10.4061/2011/787532
Chen, W. H., Pen, B. L., Yu, C. T., & Hwang, W. S. (2011). Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology, 102(3), 2916–2924. https://doi.org/10.1016/j.biortech.2010.11.052
Deutsches Institut Für Normung (1985). DIN 38414: Determination of the amenability to anaerobic digestion. In: DIN, Berlin, Germany.
Jiang, Y.; Heaven, S.; Banks, C.J.; 2012. Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy 44, 206–214, 2014.
Galbiatti, J.A.; Caramelo, A.D.; Silva, F.G.; Gerardi, E.A.B.; Chiconato,D.A. Estudo qualiquantitativo do biogás produzido por substratos em biodigestores tipo batelada. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, n°4, Campina Grande, 2010.
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
Hosseini Koupaie, E., Dahadha, S., Bazyar Lakeh, A. A., Azizi, A., & Elbeshbishy, E. (2018). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. Journal of Environmental Management, 233(September), 774–784. https://doi.org/10.1016/j.jenvman.2018.09.106
Liew, L. N., Shi, J., & Li, Y. (2011). Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 102(19), 8828–8834. https://doi.org/10.1016/j.biortech.2011.07.005
Liu, X., Zicari, S. M., Liu, G., Li, Y., & Zhang, R. (2015). Improving the bioenergy production from wheat straw with alkaline pretreatment. Biosystems Engineering, 140, 59–66. https://doi.org/10.1016/j.biosystemseng.2015.09.006
Manochio, C., Andrade, B. R., Rodriguez, R. P., & Moraes, B. S. (2017). Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews, 80(June), 743–755. https://doi.org/10.1016/j.rser.2017.05.063
Montgomery LFR, Bochmann G. Pretreatment of Feedstock for Enhanced Biogas Production. 2014. Disponivel em: https://www.nachhaltigwirtschaften.at/resources/iea_pdf/reports/iea_bioenergy_task37_study_pretreatment.pdf
Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Muryanto, Triwahyuni, E., Hendarsyah, H., & Abimanyu, H. (2015). Reuse black liquor of alkali pretreatment in bioethanol production. Energy Procedia, 68, 236–243. https://doi.org/10.1016/j.egypro.2015.03.252
Ogeda, Thais Lucy, & Petri, Denise F. S. (2010). Hidrólise Enzimática de Biomassa. Quím. Nova, vol.33, n.7, pp.1549-1558. ISSN 0100-4042. http://dx.doi.org/10.1590/S0100-40422010000700023.
Oleszek M, Król A, Tys J, Matyka M, Kulik M. (2014). Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol. 156:303–6. http://dx.doi.org/10.1016/j.biortech.2014.01.055.
Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. https://doi.org/10.1016/j.rser.2011.09.008
Rowell, R. M., Petterson, R., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Biological properties of wood. In Handbook of Wood Chemistry and Wood Composites, Second Edition. https://doi.org/10.1201/b12487
Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. In Bioresource Technology (Vol. 178). https://doi.org/10.1016/j.biortech.2014.09.103
Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers, 117, 624–631. https://doi.org/10.1016/j.carbpol.2014.10.012
Strömberg, S., Nistor, M., & Liu, J. (2014). Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests. Waste Management, 34(11), 1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018
Sun, Ye, & Cheng, Jay J.. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource technology. 96. 1599-606. 10.1016/j.biortech.2004.12.022.
Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015
Verein Deutscher Ingenieure (2006). VDI 4630: Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests. Düsseldorf.
Wang, W., Chen, X., Tan, X., Wang, Q., Liu, Y., He, M., … Yuan, Z. (2017). Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 228, 235–240. https://doi.org/10.1016/j.biortech.2016.12.076
Zhang, S., Keshwani, D. R., Xu, Y., & Hanna, M. A. (2012). Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Industrial Crops and Products, 37(1), 352–357. https://doi.org/10.1016/j.indcrop.2011.12.001
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Jhenifer Aline Bastos, Paula Verônica Remor, Janaina C. P. Lofhagen, Christopher A. Hawkins, Thiago Edwiges

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Resumo 691
- PDF (English) 366