A Methodology for Determination of Sustainable Arenas Based on set Covering Problems

Authors

  • Rodrigo Tóffano Programa de Engenharia de Transportes Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Universidade Federal do Rio de Janeiro
  • Veridianne Soares Nazareth Programa de Engenharia de Transportes Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Universidade Federal do Rio de Janeiro
  • Glaydston Mattos Ribeiro Programa de Engenharia de Transportes Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Universidade Federal do Rio de Janeiro
  • José Manoel Henriques de Jesus Programa de Pós-Graduação em Engenharia de Edificações e Ambiental Faculdade de Arquitetura, Engenharia e Tecnologia Universidade Federal de Mato Grosso.

DOI:

https://doi.org/10.5585/geas.v5i2.375

Keywords:

Set Covering Problem, Sustainability, Football Stadiums.

Abstract

Currently the choice of stadiums/arenas for events should be made so that economic and sustainable aspects are taken into account. In this context, this paper proposes a methodology for choosing stadiums/arenas based on Set Covering Problem (SCP) from the Operational Research Area. This methodology allows to select those stadiums/arenas that have the lowest cost and gather the largest possible number of measures aimed at environmental sustainability of civil construction. Through a practical application, with the help of the CPLEX 12.2 software, it was sought to present the steps of the methodology that considers the mathematical model of the SCP in its structure. The results show that the proposed methodology is able to select stadiums/arenas geared towards more sustainable mega sports events.

Downloads

Download data is not yet available.

Published

2016-07-22

How to Cite

Tóffano, R., Nazareth, V. S., Ribeiro, G. M., & de Jesus, J. M. H. (2016). A Methodology for Determination of Sustainable Arenas Based on set Covering Problems. Revista De Gestão Ambiental E Sustentabilidade, 5(2), 49–63. https://doi.org/10.5585/geas.v5i2.375