Adapting the export protocols of a system of neuroscience experiments management to the frictionless data specifications
DOI:
https://doi.org/10.5585/iptec.v8i1.16783Keywords:
Information Technology, Management, Neuroscience, Open scienceAbstract
The Neuroscience Experiments System (NES) was developed to manage information originated from neuroscience experiments. Through the NES export module, a researcher is able to download experimental data and metadata in interoperable formats; nevertheless, the understanding of what is downloaded is not always a simple task. In accordance with the agile methodology guidelines, we have worked within the Frictionless Data philosophical and technical framework in order to decrease friction that is commonly associated with understanding data and metadata. Working with Frictionless Data may lead to improving research efficiency; it is also an opportunity to create scripts and softwares to improve data analysis.
Downloads
References
Braghetto, K. R., Rocha, E. S., Ribas, C. E., Dos Santos, C. R. N., Rabaça, S. S., & Ruiz-Olazar, M. (2018, julho). Uma Plataforma Computacional para a Construção de Bancos de Dados para Experimentos de Neurociência. Anais do Brazilian e-Science Workshop (BreSci). Brazilian e-Science Workshop (BreSci), Natal, Rio Grande do Norte. http://natal.uern.br/eventos/csbc2018/?page_id=216
Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2), 274–285. https://doi.org/10.2218/ijdc.v12i2.577
Ruiz-Olazar, M., Rocha, E. S., Rabaça, S. S., Ribas, C. E., Nascimento, A. S., & Braghetto, K. R. (2016a). A Review of Guidelines and Models for Representation of Provenance Information from Neuroscience Experiments. In M. Mattoso & B. Glavic (Orgs.), Provenance and Annotation of Data and Processes (p. 222–225). Springer International Publishing.
Ruiz-Olazar, M., Rocha, E. S., Rabaça, S. S., Ribas, C. E., Vargas, C. D., Nascimento, A. S., & Braghetto, K. R. (2016b). NES: a free software to manage data from neuroscience experiments. 27–29. https://doi.org/10.3389/conf.fninf.2016.20.00043
Santos, J. C. F. dos. (2019). A ciência aberta e suas (re)configurações: Políticas, infraestruturas e prática científica [Tese (doutorado), Unicamp]. http://repositorio.unicamp.br/jspui/handle/REPOSIP/333948
Sefton, P., Carragáin, E. Ó., Goble, C., & Soiland-Reyes, S. (2019, outubro 24). Introducing RO-Crate: Research object data packaging. eResearch Australasia Conference, Brisbane, Austrália. https://conference.eresearch.edu.au/wp-content/uploads/2019/08/2019-eResearch_103_-Introducing-RO-Crate-research-object-data-packaging.pdf
Stern, R. B., d’Alencar, M., Uscapi, Y. L., Gubitoso, M. D., Roque, A. C., Helene, A. F., & Piemonte, M. E. P. (2018). Goalkeeper Game: A New Assessment Tool for Prediction of Gait Performance Under Complex Condition in People With Parkinson’s Disease. bioRxiv, 400457. https://doi.org/10.1101/400457
Vargas, C. D. & Kon, F. (2014). Em defesa do compartilhamento público de dados científicos. Le Monde Diplomatique Brasil, 32, 33.
Wiese, F., Schlecht, I., Bunke, W.-D., Gerbaulet, C., Hirth, L., Jahn, M., Kunz, F., Lorenz, C., Mühlenpfordt, J., Reimann, J., & Schill, W.-P. (2019). Open Power System Data – Frictionless data for electricity system modelling. Applied Energy, 236, 401–409. https://doi.org/10.1016/j.apenergy.2018.11.097
Yenni, G. M., Christensen, E. M., Bledsoe, E. K., Supp, S. R., Diaz, R. M., White, E. P., & Ernest, S. K. M. (2019). Developing a modern data workflow for regularly updated data. PLOS Biology, 17(1), e3000125. https://doi.org/10.1371/journal.pbio.3000125
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Inovação, Projetos e Tecnologias – IPTEC
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.