Adapting the export protocols of a system of neuroscience experiments management to the frictionless data specifications

Authors

DOI:

https://doi.org/10.5585/iptec.v8i1.16783

Keywords:

Information Technology, Management, Neuroscience, Open science

Abstract

The Neuroscience Experiments System (NES) was developed to manage information originated from neuroscience experiments. Through the NES export module, a researcher is able to download experimental data and metadata in interoperable formats; nevertheless, the understanding of what is downloaded is not always a simple task. In accordance with the agile methodology guidelines, we have worked within the Frictionless Data philosophical and technical framework in order to decrease friction that is commonly associated with understanding data and metadata. Working with Frictionless Data may lead to improving research efficiency; it is also an opportunity to create scripts and softwares to improve data analysis.

Downloads

Download data is not yet available.

Author Biographies

João Alexandre Peschanski, Faculdade Cásper Líbero Centro de Pesquisa, Inovação e Difusão em Neuromatemática (CEPID NeuroMat)

Doutor em Sociologia, Department of Sociology - University of Wisconsin-Madison – UW-Madison.  Madison, Wisconsin – Estados Unidos. Centro de Pesquisa, Inovação e Difusão em Neuromatemática (CEPID NeuroMat)

Cassiano Reinert Novais dos Santos, Centro de Pesquisa, Inovação e Difusão em Neuromatemática (CEPID NeuroMat)

Bacharel em Matemática Aplicada e Computacional, Instituto de Matemática e Estatística da Universidade de São Paulo – IME-USP.

Carlos Eduardo Ribas

Mestre em Ciências, Faculdade de Medicina da Universidade de São Paulo - FM-USP

References

Braghetto, K. R., Rocha, E. S., Ribas, C. E., Dos Santos, C. R. N., Rabaça, S. S., & Ruiz-Olazar, M. (2018, julho). Uma Plataforma Computacional para a Construção de Bancos de Dados para Experimentos de Neurociência. Anais do Brazilian e-Science Workshop (BreSci). Brazilian e-Science Workshop (BreSci), Natal, Rio Grande do Norte. http://natal.uern.br/eventos/csbc2018/?page_id=216

Fowler, D., Barratt, J., & Walsh, P. (2018). Frictionless Data: Making Research Data Quality Visible. International Journal of Digital Curation, 12(2), 274–285. https://doi.org/10.2218/ijdc.v12i2.577

Ruiz-Olazar, M., Rocha, E. S., Rabaça, S. S., Ribas, C. E., Nascimento, A. S., & Braghetto, K. R. (2016a). A Review of Guidelines and Models for Representation of Provenance Information from Neuroscience Experiments. In M. Mattoso & B. Glavic (Orgs.), Provenance and Annotation of Data and Processes (p. 222–225). Springer International Publishing.

Ruiz-Olazar, M., Rocha, E. S., Rabaça, S. S., Ribas, C. E., Vargas, C. D., Nascimento, A. S., & Braghetto, K. R. (2016b). NES: a free software to manage data from neuroscience experiments. 27–29. https://doi.org/10.3389/conf.fninf.2016.20.00043

Santos, J. C. F. dos. (2019). A ciência aberta e suas (re)configurações: Políticas, infraestruturas e prática científica [Tese (doutorado), Unicamp]. http://repositorio.unicamp.br/jspui/handle/REPOSIP/333948

Sefton, P., Carragáin, E. Ó., Goble, C., & Soiland-Reyes, S. (2019, outubro 24). Introducing RO-Crate: Research object data packaging. eResearch Australasia Conference, Brisbane, Austrália. https://conference.eresearch.edu.au/wp-content/uploads/2019/08/2019-eResearch_103_-Introducing-RO-Crate-research-object-data-packaging.pdf

Stern, R. B., d’Alencar, M., Uscapi, Y. L., Gubitoso, M. D., Roque, A. C., Helene, A. F., & Piemonte, M. E. P. (2018). Goalkeeper Game: A New Assessment Tool for Prediction of Gait Performance Under Complex Condition in People With Parkinson’s Disease. bioRxiv, 400457. https://doi.org/10.1101/400457

Vargas, C. D. & Kon, F. (2014). Em defesa do compartilhamento público de dados científicos. Le Monde Diplomatique Brasil, 32, 33.

Wiese, F., Schlecht, I., Bunke, W.-D., Gerbaulet, C., Hirth, L., Jahn, M., Kunz, F., Lorenz, C., Mühlenpfordt, J., Reimann, J., & Schill, W.-P. (2019). Open Power System Data – Frictionless data for electricity system modelling. Applied Energy, 236, 401–409. https://doi.org/10.1016/j.apenergy.2018.11.097

Yenni, G. M., Christensen, E. M., Bledsoe, E. K., Supp, S. R., Diaz, R. M., White, E. P., & Ernest, S. K. M. (2019). Developing a modern data workflow for regularly updated data. PLOS Biology, 17(1), e3000125. https://doi.org/10.1371/journal.pbio.3000125

Published

2020-06-30

How to Cite

Peschanski, J. A., dos Santos, C. R. N., & Ribas, C. E. (2020). Adapting the export protocols of a system of neuroscience experiments management to the frictionless data specifications. Revista Inovação, Projetos E Tecnologias, 8(1), 83–96. https://doi.org/10.5585/iptec.v8i1.16783

Issue

Section

Relatos técnicos