Technological innovations in agriculture:

mapping and future trends in scientific literature

Authors

DOI:

https://doi.org/10.5585/2023.24901

Keywords:

Agtech, Sustainable development, Innovation, Technology, Sustainability, Agricultural practices

Abstract

Objective: Agtechs are startups focused on developing technological solutions for agribusiness. Due to its relevance in the literature, this work aims to map scientific production and point out the trends of future studies on Agtechs, seeking to identify the panorama of contribution to the production of sustainable technologies. 

Methodology/approach: This study employed a systematic review of the literature, using bibliometric methods and content analysis methods to analyze the state of Agtech research. 

Originality/relevance: This study provides important information for researchers, practitioners, and policymakers. The analysis identified that the subject is in full ascension. In addition, it made it possible to map the existing publications in the area and the evolution of the scientific field, as well as to identify emerging themes and present the main trends for future studies in this field of research. 

Main results: The results indicate the importance of the topic and its growing popularity in scientific research. In addition, the analysis identified new research streams that deserve further exploration by the scientific community: Agricultural technological radar; Sustainability; Consequences of agriculture 4.0; Rural Development and Organizational arrangement of Agtechs.

Theoretical/methodological contributions: The study of Agtechs has significant implications for theoretical perspectives related to technological innovation. Consequently, a better understanding of the growing interest in the topic among scholars is needed to leverage its implications and possibilities. 

Social/managerial contributions: The analysis indicates that Agtechs are key to guiding the agricultural revolution towards global sustainable growth, being considered essential to optimize all food production in a sustainable way.

Downloads

Download data is not yet available.

Author Biographies

Bruno Gomes de Carvalho, Federal University of Lavras - UFLA / Lavras (MG)

Master’s in Public Administration. Federal University of Lavras - UFLA. Lavras Minas Gerais

Juliana Paviani, Federal University of Lavras - UFLA / Lavras (MG)

Master's student in Administration. Postgraduate Studies in Public Management. 

Anne Vaz, Federal University of Lavras - UFLA / Lavras (MG)

Master's student in Administration. Federal University of Lavras - UFLA. Lavras Minas Gerais

Cleber Carvalho de Castro, Federal University of Lavras - UFLA / Lavras (MG)

Ph.D. in Agribusiness. Federal University of Lavras - UFLA

Paulo Henrique Montagnana Vicente Leme, Federal University of Lavras - UFLA / Lavras (MG)

Ph.D in Administration. Federal University of Lavras - UFLA

References

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive Science mapping analysis. Journal of informetrics, 11(4), 959-975. Doi: https://doi.org/10.1016/j.joi.2017.08.007

Avellan, A., et al. (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS nano, 13(5), 5291-5305. Doi: https://doi.org/10.1021/acsnano.8b09781

Ayaz, M., et al. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access, 7, 129551-129583. Doi: 10.1109/ACCESS.2019.2932609

Babenko, V., et al. (2022). Agritech startup ecosystem in Ukraine: ideas and realization. In Digital Transformation Technology. Springer, Singapore, 311-322. Doi: https://doi.org/10.1007/978-981-16-2275-5_19

Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology, 66(11), 2215-2222. Doi: https://doi.org/10.1002/asi.23329

Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(Suppl_1), 5303-5310. Doi: https://doi.org/10.1073/pnas.0307513100

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transiente patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. Doi: https://doi.org/10.1002/asi.20317

Costa, J. T. F., & Costa, V. S. (2022). O pagamento por serviços ambientais: uma análise para o desenvolvimento sustentável da agricultura familiar do Rio Grande do Sul Payment for environmental services: an analysis for the sustainable development of family agriculture in Rio Grande do Sul. Brazilian Journal of Development, 8(2), 10172-10186. DOI:10.34117/bjdv8n2-114

Dayioglu, M. A., & Turker, U. (2021). Digital Transformation for Sustainable Future-Agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4), 373-399. Doi: https://doi.org/10.15832/ankutbd.986431

Donthu, N., et al. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. Doi: https://doi.org/10.1016/j.jbusres.2021.04.070

Dutia, S. (2014). Agtech: Challenges and opportunities for sustainable growth. Available at SSRN 2431316. Doi: http://dx.doi.org/10.2139/ssrn.2431316

Eck, N. J. V., & Waltman, L. (2014). Visualizing bibliometric networks. In Measuring scholarly impact. Springer, Cham, 285-320. Doi: https://doi.org/10.1007/978-3-319-10377-8_13

Farooq, M. S., et al. (2020). Role of IoT technology in agriculture: A systematic literature review. Electronics, 9(2), 319. Doi: 10.3390/electronics9020319

Filser, L. D., et al. (2017). State of research and future research tendencies in lean healthcare: a bibliometric analysis. Scientometrics, 112(2), 799-816. Doi: https://doi.org/10.1007/s11192-017-2409-8

Gomes, L. A. V., et al. (2018). Unpacking the innovation ecosystem construct: Evolution, gaps and trends. Technological Forecasting and Social Change, 136, 30-48. Doi: https://doi.org/10.1016/j.techfore.2016.11.009

Hofmann, T., et al. (2020). Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1(7), 416-425. Doi: https://doi.org/10.1038/s43016-020-0110-1

Iddy, J. J., & Alon, I. (2019). Knowledge management in franchising: a research agenda. Journal of Knowledge Management, 23(4), 763-785. Doi: https://doi.org/10.1108/JKM-07-2018-0441

Kah, M., et al. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature nanotechnology, 13(8), 677-684. Doi: https://doi.org/10.1038/s41565-018-0131-1

Kah, M., et al. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology, 14(6), 532-540. Doi: https://doi.org/10.1038/s41565-019-0439-5

Kakani, V., et al. (2020). A critical review on computer vision and artificial intelligence in the food industry. Journal of Agriculture and Food Research, 2, 100033. Doi: https://doi.org/10.1016/j.jafr.2020.100033

Klerkx, L., & Rose, D. (2020). Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Global Food Security, 24, 100347. Doi: https://doi.org/10.1016/j.gfs.2019.100347

Kumar, S., et al. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. Doi: https://doi.org/10.1016/j.jconrel.2018.12.012

Lowry, G. V., et al. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature nanotechnology, 14(6), 517-522. Doi: https://doi.org/10.1038/s41565-019-0461-7

Mahmud, R., Ramamohanarao, K., & Buyya, R. (2020). Application management in fog computing environments: A taxonomy, review and future directions. ACM Computing Surveys (CSUR), 53(4), 1-43. Doi: https://doi.org/10.1145/3403955

Minayo, M. C. S. (2000). O desafio do conhecimento: pesquisa qualitativa em saúde (7a ed.). São Paulo: Hucitec; Rio de Janeiro: Abrasco, p. 197-211.

Prado, J. W., et al. (2016). Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968-2014). Scientometrics, 106(3), 1007-1029. Doi: https://doi.org/10.1007/s11192-015-1829-6

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications, 9(1), 12. Doi: https://doi.org/10.3390/publications9010012

Quintam, C. P. R., & de Assunção, G. M. (2023). Panorama do Agronegócio Exportador Brasileiro. RECIMA21-Revista Científica Multidisciplinar https://doi.org/10.47820/recima21.v4i7.3642

Ries, E. (2012). A startup enxuta. Leya.

Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers in Sustainable Food Systems, 2, 87. Doi: https://doi.org/10.3389/fsufs.2018.00087

Rotz, S., et al. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labor and rural communities. Journal of Rural Studies, 68, 112-122. Doi: https://doi.org/10.1016/j.jrurstud.2019.01.023

Sesso Filho, U. A., et al. (2021). Measurement of the agro-industrial complex in the world: a comparative study between countries. Revista de Economia e Sociologia Rural, 60. Doi: https://doi.org/10.1590/1806-9479.2021.235345

Spanaki, K., et al. (2022). Disruptive technologies in agricultural operations: a systematic review of AI-driven AgriTech research. Annals of Operations Research, 308(1), 491-524. Doi: https://doi.org/10.1007/s10479-020-03922-z

Suominen, A., Seppänen, M., & Dedehayir, O. (2019). A bibliometric review on innovation systems and ecosystems: a research agenda. European Journal of Innovation Management, 22(2), 335-360. Doi: https://doi.org/10.1108/EJIM-12-2017-0188

Udayanga, D., et al. (2011). The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal diversity, 50(1), 189-225. Doi: https://doi.org/10.1007/s13225-011-0126-9

UN, Transforming Our World: The 2030 Agenda for Sustainable Development (UN, New York, 2015); http://bit.ly/TransformAgendaSDG-pdf

Vieira Filho, J. E. R., & Fishlow, A. (2017). Agricultura e indústria no Brasil: inovação e competitividade.

Weersink, A., et al. (2018). Opportunities and challenges for big data in agricultural and environmental analysis. Annual Review of Resource Economics, 10(1), 19-37. Doi: https://doi.org/10.1146/annurev-resource-100516-053654

Wojnarowicz, J., Chudoba, T., & Lojkowski, W. (2020). A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials, 10(6), 1086. Doi: https://doi.org/10.3390/nano10061086

Xu, J., et al. (2021). Current and emergent analytical methods for monitoring the behavior of agricultural functional nanoparticles in relevant matrices: A review. Current Opinion in Chemical Engineering, 33, 100706. Doi: https://doi.org/10.1016/j.coche.2021.100706

Zhao, L., et al. (2020). Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935-1947. Doi: https://doi.org/10.1021/acs.jafc.9b06615

Published

19.12.2023

How to Cite

Gomes de Carvalho, B., Paviani, J., Vaz, A., Carvalho de Castro, C., & Montagnana Vicente Leme, P. H. (2023). Technological innovations in agriculture: : mapping and future trends in scientific literature. Revista Ibero-Americana De Estratégia, 22(2), e24901. https://doi.org/10.5585/2023.24901