The Importance of the Management of Micropollutants in an Advanced Wastewater Treatment Plant in the Amazon
DOI:
https://doi.org/10.5585/2023.22689Keywords:
micropollutants, removal, wastewater, technologies, integrated managementAbstract
Objective: This study aims to determine the dynamics of the discharge of micropollutants in the Amazon River from an advanced wastewater treatment plant (WWTP) and discusses the importance of management in order to minimize impacts.
Methodology: A total of 13 micropollutants: ibuprofen (IBP), paracetamol (PCM), atenolol (ATL), loratadine (LTD), fexofenadine hydrochloride (FXF), amoxicillin (AMX), 17α-ethynyl estradiol (EE2), caffeine (CAF), sodium diclofenac (DCF), estrone (E1), estriol (E3), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) were analyzed in effluent samples that came from different treatment stages of a WWTP with advanced treatment technology at different periods of the day. The presence of micropollutants and their quantification were obtained using LC-MS and GC-MS techniques.
Originality/Relevance: This is the first study carried out at a WWTP in Manaus, a city in Brazil that is located within one of the most extensive fluvial system in the world. The data obtained are important for understanding the dynamics of the discharge of micropollutants into the Amazon River and its implications.
Main results: After the treatment process, the micropollutants paracetamol, fexofenadine hydrochloride, caffeine, sodium diclofenac, and bis(2-ethylhexyl) phthalate were detected in the final effluent.
Contributions: The results obtained in this study indicate the need for integrated management, considering technical, governmental, organizational and community-based approaches to minimize the effects of the discharge of micropollutants into the environment.
Downloads
References
Abegglen, C., Joss, A., McArdell, C. S., Fink, G., Schlüsener, M. P., Ternes, T. A., & Siegrist, H. (2009). The fate of selected micropollutants in a single-house MBR. Water Research, 43(7), 2036–2046. https://doi.org/10.1016/j.watres.2009.02.005
Alighardashi, A., Pakan, M., Jamshidi, S., & Shariati, F. P. (2017). Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatmenty. Membrane Water Treatment, 8(6), 517–528. https://doi.org/10.12989/mwt.2017.8.6.517
Alvarino, T., Torregrosa, N., Omil, F., Lema, J. M., & Suarez, S. (2017). Assessing the feasibility of two hybrid MBR systems using PAC for removing macro and micropollutants. Journal of Environmental Management, 203, 831–837. https://doi.org/10.1016/j.jenvman.2016.03.023
Aragão, R. B. de A., Semensatto, D., Calixto, L. A., & Labuto, G. (2020). Pharmaceutical market, environmental public policies and water quality: the case of the São Paulo Metropolitan Region, Brazil. Cadernos de Saúde Pública, 36(11). https://doi.org/10.1590/0102-311x00192319
Barcellos, D. da S., Procopiuck, M., & Bollmann, H. A. (2021). Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. Science of The Total Environment, 151128. https://doi.org/10.1016/j.scitotenv.2021.151128
Bogunović, M., Ivančev-Tumbas, I., Česen, M., Sekulić, T. D., Prodanović, J., Tubić, A., Heath, D., & Heath, E. (2021). Removal of selected emerging micropollutants from wastewater treatment plant effluent by advanced non-oxidative treatment - A lab-scale case study from Serbia. Science of the Total Environment, 765. https://doi.org/10.1016/j.scitotenv.2020.142764
Carles, L., Wullschleger, S., Joss, A., Eggen, R. I. L., Schirmer, K., Schuwirth, N., Stamm, C., & Tlili, A. (2021). Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. Water Research, 203. https://doi.org/10.1016/j.watres.2021.117486
Fabregat-Safont, D., Ibáñez, M., Bijlsma, L., Hernández, F., Waichman, A. V., de Oliveira, R., & Rico, A. (2021). Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River. Water Research, 200. https://doi.org/10.1016/j.watres.2021.117251
Fassoni‐Andrade, A. C., Fleischmann, A. S., Papa, F., Paiva, R. C. D. de, Wongchuig, S., Melack, J. M., Moreira, A. A., Paris, A., Ruhoff, A., Barbosa, C., Maciel, D. A., Novo, E., Durand, F., Frappart, F., Aires, F., Abrahão, G. M., Ferreira‐Ferreira, J., Espinoza, J. C., Laipelt, L., … Pellet, V. (2021). Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophysics, 59(4). https://doi.org/10.1029/2020RG000728
Fudala-Ksiazek, S., Pierpaoli, M., & Luczkiewicz, A. (2018). Efficiency of landfill leachate treatment in a MBR/UF system combined with NF, with a special focus on phthalates and bisphenol A removal. Waste Management, 78, 94–103. https://doi.org/10.1016/j.wasman.2018.05.012
Gallego, S., Montemurro, N., Béguet, J., Rouard, N., Philippot, L., Pérez, S., & Martin-Laurent, F. (2021). Ecotoxicological risk assessment of wastewater irrigation on soil microorganisms: Fate and impact of wastewater-borne micropollutants in lettuce-soil system. Ecotoxicology and Environmental Safety, 223. https://doi.org/10.1016/j.ecoenv.2021.112595
García-Mateos, F. J., Ruiz-Rosas, R., Marqués, M. D., Cotoruelo, L. M., Rodríguez-Mirasol, J., & Cordero, T. (2015). Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal, 279, 18–30. https://doi.org/10.1016/j.cej.2015.04.144
Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Batt, A. L., Benson, R., Boone, J. S., Conerly, O., Donohue, M. J., King, D. N., Kostich, M. S., Mash, H. E., Pfaller, S. L., Schenck, K. M., Simmons, J. E., Varughese, E. A., Vesper, S. J., Villegas, E. N., & Wilson, V. S. (2017). Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of the Total Environment, 581–582, 909–922. https://doi.org/10.1016/j.scitotenv.2016.12.004
Goswami, L., Vinoth Kumar, R., Borah, S. N., Arul Manikandan, N., Pakshirajan, K., & Pugazhenthi, G. (2018). Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 26, 314–328. https://doi.org/10.1016/j.jwpe.2018.10.024
Guillossou, R., Le Roux, J., Mailler, R., Vulliet, E., Morlay, C., Nauleau, F., Gasperi, J., & Rocher, V. (2019). Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere, 218, 1050–1060. https://doi.org/10.1016/j.chemosphere.2018.11.182
Henning, N., Falås, P., Castronovo, S., Jewell, K. S., Bester, K., Ternes, T. A., & Wick, A. (2019). Biological transformation of fexofenadine and sitagliptin by carrier-attached biomass and suspended sludge from a hybrid moving bed biofilm reactor. Water Research, 167, 115034. https://doi.org/10.1016/j.watres.2019.115034
IBGE. (2021). Estimativas da população : 2021 : nota metodológica n. 01 : estimativas da população residente para os municípios e para as unidades da federação brasileiros, com data de referência em 1o de julho de 2021. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101849.pdf
Isik, O., Erbil, M. C., Abdelrahman, A. M., Ersahin, M. E., Koyuncu, I., Ozgun, H., & Demir, I. (2022). Removal of micropollutants from municipal wastewater by membrane bioreactors: Conventional membrane versus dynamic membrane. Journal of Environmental Management, 303, 114233. https://doi.org/10.1016/j.jenvman.2021.114233
K’oreje, K. O., Kandie, F. J., Vergeynst, L., Abira, M. A., Van Langenhove, H., Okoth, M., & Demeestere, K. (2018). Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya. Science of the Total Environment, 637–638, 336–348. https://doi.org/10.1016/j.scitotenv.2018.04.331
Kim, M., Guerra, P., Shah, A., Parsa, M., Alaee, M., & Smyth, S. A. (2014). Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Science and Technology, 69(11), 2221–2229. https://doi.org/10.2166/wst.2014.145
Komolafe, O., Mrozik, W., Dolfing, J., Acharya, K., Vassalle, L., Mota, C. R., & Davenport, R. (2021). Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. Journal of Environmental Management, 287. https://doi.org/10.1016/j.jenvman.2021.112286
Kümmerer, K., Dionysiou, D. D., Olsson, O., & Fatta-Kassinos, D. (2019). Reducing aquatic micropollutants – Increasing the focus on input prevention and integrated emission management. Science of The Total Environment, 652, 836–850. https://doi.org/10.1016/j.scitotenv.2018.10.219
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., D’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C., Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B., & Stevaux, J. C. (2017). Damming the rivers of the Amazon basin. In Nature (Vol. 546, Issue 7658, pp. 363–369). https://doi.org/10.1038/nature22333
Le, T.-H., Ng, C., Tran, N. H., Chen, H., & Gin, K. Y.-H. (2018). Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Research, 145, 498–508. https://doi.org/10.1016/j.watres.2018.08.060
Li, X., Shang, X., Luo, T., Du, X., Wang, Y., Xie, Q., Matsuura, N., Chen, J., & Kadokami, K. (2016). Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environmental Pollution, 218, 739–748. https://doi.org/10.1016/j.envpol.2016.07.070
Lin, A. Y. C., Yu, T. H., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167(1–3), 1163–1169. https://doi.org/10.1016/j.jhazmat.2009.01.108
Louros, V. L., Lima, D. L. D., Leitão, J. H., Esteves, V. I., & Nadais, H. G. A. (2021). Impact of UASB reactors operation mode on the removal of estrone and 17α-ethinylestradiol from wastewaters. Science of the Total Environment, 764. https://doi.org/10.1016/j.scitotenv.2020.144291
Malm, O. (1998). Gold mining as a source of mercury exposure in the Brazilian Amazon. Environmental Research, 77(2), 73–78. https://pubmed.ncbi.nlm.nih.gov/9600798/
Mert, B. K., Ozengin, N., Dogan, E. C., & Aydıner, C. (2018). Efficient Removal Approach of Micropollutants in Wastewater Using Membrane Bioreactor. In Wastewater and Water Quality. https://doi.org/10.5772/intechopen.75183
Metz, F., Leifeld, P., & Ingold, K. (2019). Interdependent policy instrument preferences: a two-mode network approach. Journal of Public Policy, 39(4), 609–636. https://doi.org/10.1017/S0143814X18000181
Mutzner, L., Furrer, V., Castebrunet, H., Dittmer, U., Fuchs, S., Gernjak, W., Gromaire, M.-C., Matzinger, A., Mikkelsen, P. S., Selbig, W. R., & Vezzaro, L. (2022). A decade of monitoring micropollutants in urban wet-weather flows: What did we learn? Water Research, 223, 118968. https://doi.org/10.1016/j.watres.2022.118968
Ngweme, G. N., Al Salah, D. M. M., Laffite, A., Sivalingam, P., Grandjean, D., Konde, J. N., Mulaji, C. K., Breider, F., & Poté, J. (2021). Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo. Science of the Total Environment, 754. https://doi.org/10.1016/j.scitotenv.2020.142175
Oberdorff, T., Dias, M. S., Jézéquel, C., Albert, J. S., Arantes, C. C., Bigorne, R., Carvajal-Valleros, F. M., De Wever, A., Frederico, R. G., Hidalgo, M., Hugueny, B., Leprieur, F., Maldonado, M., Maldonado-Ocampo, J., Martens, K., Ortega, H., Sarmiento, J., Tedesco, P. A., Torrente-Vilara, G., … Zuanon, J. (2019). Unexpected fish diversity gradients in the Amazon basin. Science Advances, 5(9). https://doi.org/10.1126/sciadv.aav8681
Ofrydopoulou, A., Nannou, C., Evgenidou, E., Christodoulou, A., & Lambropoulou, D. (2022). Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Science of The Total Environment, 802, 149860. https://doi.org/10.1016/j.scitotenv.2021.149860
Pasquini, L., Munoz, J. F., Pons, M. N., Yvon, J., Dauchy, X., France, X., Le, N. D., France-Lanord, C., & Görner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. Science of the Total Environment, 481(1), 459–468. https://doi.org/10.1016/j.scitotenv.2014.02.075
Pessoa, G. de P., Santos, A. B. dos, Souza, N. C. de, Alves, J. A. C., & Nascimento, R. F. do. (2012). Desenvolvimento de metodologia para avaliar remoção de estrogênios em estações de tratamento de esgotos. Química Nova, 35(5), 968–973. https://doi.org/10.1590/s0100-40422012000500019
Pessoa, G. P., de Souza, N. C., Vidal, C. B., Alves, J. A. C., Firmino, P. I. M., Nascimento, R. F., & dos Santos, A. B. (2014). Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of The Total Environment, 490, 288–295. https://doi.org/10.1016/j.scitotenv.2014.05.008
Phan, H. V., Hai, F. I., McDonald, J. A., Khan, S. J., Zhang, R., Price, W. E., Broeckmann, A., & Nghiem, L. D. (2015). Nutrient and trace organic contaminant removal from wastewater of a resort town: Comparison between a pilot and a full scale membrane bioreactor. International Biodeterioration & Biodegradation, 102, 40–48. https://doi.org/10.1016/j.ibiod.2015.02.010
Quadra, G. R., Li, Z., Silva, P. S. A., Barros, N., Roland, F., & Sobek, A. (2021). Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River. Archives of Environmental Contamination and Toxicology, 81(1), 142–154. https://doi.org/10.1007/s00244-021-00853-z
Ren, L., Ma, J., Chen, M., Qiao, Y., Dai, R., Li, X., & Wang, Z. (2022). Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. IScience, 25(5), 104342. https://doi.org/10.1016/j.isci.2022.104342
Ribas, P. P., dos Santos, E. O., Costa, C. C., & Gonzáles, P. L. S. (2021). Estudos sobre remoção de micropoluentes emergentes em efluentes no Brasil: uma revisão sistemática. Revista Brasileira de Meio Ambiente, 9(1), 10. https://doi.org/10.5281/zenodo.4558397
Ribas, P. P., Santos, E. O., Costa, C. C., & Gonzáles, P. L. S. (2022). Remoção de produtos farmacêuticos no tratamento avançado de matrizes aquosas: um estudo piloto. Revista de Gestão de Água Da América Latina, 19(1), 12–0. https://doi.org/10.21168/rega.v19e12
Rico, A., de Oliveira, R., de Souza Nunes, G. S., Rizzi, C., Villa, S., López-Heras, I., Vighi, M., & Waichman, A. V. (2021). Pharmaceuticals and other urban contaminants threaten Amazonian freshwater ecosystems. Environment International, 155. https://doi.org/10.1016/j.envint.2021.106702
Roberts, G. C., Nenes, A., Seinfeld, J. H., & Andreae, M. O. (2003). Impact of biomass burning on cloud properties in the Amazon Basin. Journal of Geophysical Research: Atmospheres, 108(2). https://doi.org/10.1029/2001jd000985
Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W., & Wolska, L. (2020). Micropollutants in treated wastewater. In Ambio (Vol. 49, Issue 2, pp. 487–503). https://doi.org/10.1007/s13280-019-01219-5
Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., & Espinoza, J. C. (2020). Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 54(9–10), 4169–4189. https://doi.org/10.1007/s00382-020-05223-4
Sekulic, M. T., Boskovic, N., Milanovic, M., Letic, N. G., Gligoric, E., & Pap, S. (2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, 284, 372–382. https://doi.org/10.1016/j.molliq.2019.04.020
SNIS - Sistema Nacional de Informações sobre Saneamento. (2021). Diagnóstico Temático - Serviços de Água e Esgoto. www.snis.gov.br
Tatarchuk, T., Paliychuk, N., Bitra, R. B., Shyichuk, A., Naushad, M. U., Mironyuk, I., & Ziółkowska, D. (2019). Adsorptive removal of toxic methylene blue and acid orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalination and Water Treatment, 150, 374–385. https://doi.org/10.5004/dwt.2019.23751
Thomas, K. V., Araújo da Silva, F. M., Langford, K. H., de Souza, A. D. L., Nizzeto, L., & Waichman, A. V. (2014). Screening for selected human pharmaceuticals and cocaine in the urban streams of Manaus, Amazonas, Brazil. Journal of the American Water Resources Association, 50(2), 302–308. https://doi.org/10.1111/jawr.12164
Tosun, J., Schaub, S., & Fleig, A. (2020). What determines regulatory preferences? Insights from micropollutants in surface waters. Environmental Science & Policy, 106, 136–144. https://doi.org/10.1016/j.envsci.2020.02.001
Undeman, E., Rasmusson, K., Kokorite, I., Leppänen, M. T., Larsen, M. M., Pazdro, K., & Siedlewicz, G. (2022). Micropollutants in urban wastewater: large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment. Marine Pollution Bulletin, 178, 113559. https://doi.org/10.1016/j.marpolbul.2022.113559
United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
Vassalle, L., García-Galán, M. J., Aquino, S. F., Afonso, R. J. de C. F., Ferrer, I., Passos, F., & R Mota, C. (2020). Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere, 248. https://doi.org/10.1016/j.chemosphere.2020.125969
Von Sperling, M. (2016). Urban wastewater treatment in Brazil. Minas Gerais Brazil, August, 27. www.iadb.org
Wang, J., Tian, Z., Huo, Y., Yang, M., Zheng, X., & Zhang, Y. (2018). Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. Journal of Environmental Sciences, 67, 309–317. https://doi.org/10.1016/j.jes.2017.09.014
Xiao, K., Liang, S., Wang, X., Chen, C., & Huang, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresource Technology, 271, 473–481. https://doi.org/10.1016/j.biortech.2018.09.061
Yang, Y. Y., Toor, G. S., Wilson, P. C., & Williams, C. F. (2017). Micropollutants in groundwater from septic systems: Transformations, transport mechanisms, and human health risk assessment. Water Research, 123, 258–267. https://doi.org/10.1016/j.watres.2017.06.054
Zaviska, F., Drogui, P., Grasmick, A., Azais, A., & Héran, M. (2013). Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science, 429, 121–129. https://doi.org/10.1016/j.memsci.2012.11.022
Zhang, K., Wu, X., Luo, H., Wang, W., Yang, S., Chen, J., Chen, W., Chen, J., Mo, Y., & Li, L. (2021). Biochemical pathways and enhanced degradation of dioctyl phthalate (DEHP) by sodium alginate immobilization in MBR system. Water Science and Technology, 83(3), 664–677. https://doi.org/10.2166/wst.2020.605
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.