Big data analytics applied to health services: a literature review
DOI:
https://doi.org/10.5585/exactaep.2021.17297Keywords:
Big data analytics, Health services, Health analytics, Technology transfer.Abstract
The purpose of this study is to understand the concepts and evolution of big data analytics applied to health services, considering activities that involve the diagnosis, treatment, and management of the patient. The literature review, consulting the databases Science Direct, Scopus and Web of Science and employing the keywords health analytics and big data analytics with no time restrictions, found papers that approach, specifically, the use of big data analytics in the context of healthcare, represented by examples and related analyses. Time and decision-making appear as actions developed by both the information technology team and the clinical team, may consider variables such as cost, time, decision, and functional structure performance as the main determining factors aligned with corporate strategy. This work expects to foster research on aspects of public health, in addition to considering the concern with the survival of affected people.
Downloads
References
Alharthi, H. (2018). Healthcare predictive analytics: An overview with a focus on Saudi Arabia. Journal of infection and public health, 11(6), 749-756. https://doi.org/10.1016/j.jiph.2018.02.005.
Alkobaisi, S., Bae, W. D., Horak, M., Narayanappa, S., Lee, J., AbuKhousa, E., ... & Bae, D. J. (2019). Predictive and exposome analytics: A case study of asthma exacerbation management. Journal of Ambient Intelligence and Smart Environments, (Preprint), 1-26. https://doi.org/10.3233/AIS-190540
Abusharekh, A., Stewart, S. A., Hashemian, N., & Abidi, S. S. R. (2015, June). H-DRIVE: A Big Health Data Analytics Platform for Evidence-Informed Decision Making. In 2015 IEEE International Congress on Big Data (pp. 416-423). IEEE. https://doi.org/10.1109/BigDataCongress.2015.68
Balaji, S., Patil, M., & McGregor, C. (2017, June). A cloud based big data based online health analytics for rural nicus and picus in india: Opportunities and challenges. In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 385-390). IEEE. https://doi.org/10.1109/CBMS.2017.112
Batarseh, F. A., & Latif, E. A. (2016). Assessing the quality of service using big data analytics: with application to healthcare. Big Data Research, 4, 13-24. https://doi.org/10.1016/j.bdr.2015.10.001
Balthazar, P., Harri, P., Prater, A., & Safdar, N. M. (2018). Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. Journal of the American College of Radiology, 15(3), 580-586. https://doi.org/10.1016/j.jacr.2017.11.035
Blandford, A. (2019). HCI for health and wellbeing: Challenges and opportunities. International Journal of Human-Computer Studies, 131, 41-51. https://doi.org/10.1016/j.ijhcs.2019.06.007.
Cano, I., Tenyi, A., Vela, E., Miralles, F., & Roca, J. (2017). Perspectives on big data applications of health information. Current Opinion in Systems Biology, 3, 36-42. https://doi.org/10.1016/j.coisb.2017.04.012
Emani, C. K., Cullot, N., & Nicolle, C. (2015). Understandable big data: a survey. Computer science review, 17, 70-81. https://doi.org/10.1016/j.cosrev.2015.05.002
Galetsi, P., Katsaliaki, K., & Kumar, S. (2020). Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 50, 206-216. https://doi.org/10.1016/j.ijinfomgt.2019.05.003
Galetsi, P., Katsaliaki, K., & Kumar, S. (2019). Values, challenges and future directions of big data analytics in healthcare: A systematic review. Social Science & Medicine, 241, 112533. https://doi.org/10.1016/j.socscimed.2019.112533
Galetsi, P., & Katsaliaki., & Kumar. (2019). Big Data Analytics in Health: an overview and bibliometric study of research activity. Health Information & Libraries Journal. https://doi.org/10.1111/hir.12286
Galetsi, P., & Katsaliaki., & Kumar. (2019). A review of the literature on big data analytics in healthcare. Journal of the Operational Research Society, 1-19. https://doi.org/10.1080/01605682.2019.1630328
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Gonzalez-Alonso, P., Vilar, R., & Lupiáñez-Villanueva, F. (2017, June). Meeting Technology and Methodology into Health Big Data Analytics Scenarios. In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 284-285). IEEE. https://doi.org/10.1109/CBMS.2017.71
Harerimana, G., Jang, B., Kim, J. W., & Park, H. K. (2018). Health big data analytics: A technology survey. IEEE Access, 6, 65661-65678. https://doi.org/10.1109/ACCESS.2018.2878254
Kakhki, M. D., Singh, R., & Loyd, K. W. (2015). Developing Health Analytics Design Artifact for Improved Patient Activation: An On-going Case Study. In New Contributions in Information Systems and Technologies (pp. 733-739). Springer, Cham. https://doi.org/ 10.1007/978-3-319-16486-1_72
Kan, H., Nagar, S., Patel, J., Wallace, D. J., Molta, C., & Chang, D. J. (2016). Longitudinal treatment patterns and associated outcomes in patients with newly diagnosed systemic lupus erythematosus. Clinical Therapeutics, 38(3), 610-624. https://doi.org/10.1016/j.clinthera.2016.01.016
kBioAssist, S. (2017). CrowdHEALTH: Holistic Health Records and Big Data Analytics for Health Policy Making and Personalized Health. Informatics Empowers Healthcare Transformation, 238, 19. http://dx.doi.org/10.3233/978-1-61499-781-8-19
Khennou, F., Khamlichi, Y. I., & Chaoui, N. E. H. (2018). Improving the Use of Big Data Analytics within Electronic Health Records: A Case Study based OpenEHR. Procedia Computer Science, 127, 60-68. https://doi.org/10.1016/j.procs.2018.01.098
Manyika, J. (2011). Big data: The next frontier for innovation, competition, and productivity. http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
McGregor, C., & Majola, P. X. (2019, June). Opportunities for a Cloud Based Health Analytics as a Service for Eastern Cape Initiation Schools in South Africa. In 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 531-534). IEEE. https://doi.org/10.1109/CBMS.2019.00108
Moutselos, K., Kyriazis, D., & Maglogiannis, I. (2018, July). A Web Based Modular Environment for Assisting Health Policy Making Utilizing Big Data Analytics. In 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA) (pp. 1-5). IEEE. https://doi.org/10.1109/IISA.2018.8633625
Moutselos, K., Kyriazis, D., Diamantopoulou, V., & Maglogiannis, I. (2018, December). Trustworthy data processing for health analytics tasks. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3774-3779). IEEE. https://doi.org/10.1109/BigData.2018.8622449
Nambiar, R., Bhardwaj, R., Sethi, A., & Vargheese, R. (2013, October). A look at challenges and opportunities of big data analytics in healthcare. In 2013 IEEE international conference on Big Data (pp. 17-22). IEEE. https://doi.org/10.1109/BigData.2013.6691753
Nguyen, T., Larsen, M., O’Dea, B., Nguyen, H., Nguyen, D. T., Yearwood, J., ... & Christensen, H. (2018). Using spatiotemporal distribution of geocoded Twitter data to predict US county-level health indices. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.01.014
Oussous, A., Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University-Computer and Information Sciences, 30(4), 431-448. https://doi.org/10.1016/j.jksuci.2017.06.001
Pagani, R. N., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105(3), 2109-2135. https://doi.org/10.1007/s11192-015-1744-x
Pashazadeh, A., & Navimipour, N. J. (2018). Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review. Journal of biomedical informatics, 82, 47-62. https://doi.org/10.1016/j.jbi.2018.03.014
Poornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76-84. https://doi.org/10.1016/j.ijin.2020.07.001
Sabra, S., Malik, K. M., & Alobaidi, M. (2018). Prediction of venous thromboembolism using semantic and sentiment analyses of clinical narratives. Computers in biology and medicine, 94, 1-10. https://doi.org/10.1016/j.compbiomed.2017.12.026
Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing & Management, 54(5), 758-790. https://doi.org/10.1016/j.ipm.2018.01.010
Stephanie, L., & Sharma, R. S. (2020). Digital health eco-systems: An epochal review of practice-oriented research. International Journal of Information Management, 53, 102032. https://doi.org/10.1016/j.ijinfomgt.2019.10.017
Shafqat, S., Kishwer, S., Rasool, R. U., Qadir, J., Amjad, T., & Ahmad, H. F. (2020). Big data analytics enhanced healthcare systems: a review. The Journal of Supercomputing, 76(3), 1754-1799. https://doi.org/10.1007/s11227-017-2222-4
Suresh, S. (2016). Big data and predictive analytics: applications in the care of children. Pediatric Clinics, 63(2), 357-366. https://doi.org/10.1016/j.pcl.2015.12.007
Xu, Z. (2019). An empirical study of patients' privacy concerns for health informatics as a service. Technological Forecasting and Social Change, 143, 297-306. https://doi.org/10.1016/j.techfore.2019.01.018
Zhou, Y., Zhao, L., Zhou, N., Zhao, Y., Marino, S., Wang, T., ... & Dinov, I. D. (2019). Predictive Big Data Analytics using the UK Biobank Data. Scientific reports, 9(1), 6012. https://doi.org/10.1038/s41598-019-41634-y
Wlodarczak, P., Soar, P., & Ally, M. (2015). Behavioural health analytics using mobile phones. EAI Endorsed Trans. Scalable Information Systems, 2(5), e6. https://doi.org/10.4108/sis.2.5.e6
Wlodarczak, P., Soar, J., & Ally, M. (2015, May). Reality mining in eHealth. In International Conference on Health Information Science (pp. 1-6). Springer, Cham. https://doi.org/ 10.1007/978-3-319-19156-0_1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Exacta
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Abstract 795
- PDF 674