Asset maintenance in the context of industry 4.0: a bibliometric and systematic analysis

Authors

  • Thays Aparecida Vendramin Delecrodio Universidade Nove de Julho - UNINOVE
  • Glauber Roger Neves Universidade Nove de Julho - UNINOVE
  • Wagner Cezar Lucato Universidade Nove de Julho - UNINOVE. São Paulo, SP.

DOI:

https://doi.org/10.5585/exactaep.2021.17589

Keywords:

asset maintenance, Industry 4.0, Cost, Bibliometry, Systematic analysis

Abstract

This article aims to investigate the recent scientific production on asset maintenance in the context of Industry 4.0. For this, a systematic review of the literature was made, combining a bibliometric study and content analysis of recent articles dealing with the topic of interest in this work. As a result, 225 articles were identified, of which 7 that deal with the topic of generating savings in the cost of maintenance were considered for further analysis. As a conclusion, it was observed that in the context of maintenance in the era of industry 4.0, there is still a shortage and need for studies and practical applications, which provide adequate learning and help in understanding and improving technologies. This work brings theoretical contributions as it identifies research gaps and suggested some opportunities to be considered in future studies on the subject. For the practice the knowledge exposed here may become a guide for managers in the Maintenance areas on the main topics that associate asset maintenance management and the requirements of I 4.0 technologies.

Downloads

Download data is not yet available.

Author Biographies

Thays Aparecida Vendramin Delecrodio, Universidade Nove de Julho - UNINOVE

Mestranda do Progrfama de Pós Graduação em Engenharia de Produção da Universidade Nove de Julho - UNINOVE.

Glauber Roger Neves, Universidade Nove de Julho - UNINOVE

Doutorando do Progrfama de Pós Graduação em Engenharia de Produção da Universidade Nove de Julho - UNINOVE.

Wagner Cezar Lucato, Universidade Nove de Julho - UNINOVE. São Paulo, SP.

Professor e Pesquisador do Progrfama de Pós Graduação em Engenharia de Produção da Universidade Nove de Julho - UNINOVE.

References

ABRAMAN - Associação Brasileira de Manutenção e Gestão de Ativos. (2013). A situação da manutenção no Brasil. Anais do 28º Congresso Brasileiro de Manutenção. Salvador: Abraman.

Al-Ahmari, A., & Li, Z. (2016). Analysis of a multimachine flexible manufacturing cell using stochastic Petri nets. Advances in Mechanical Engineering, 8(11), 1-9. Retrieved June 10, 2020, from https://doi.org/10.1177/1687814016680168.

Al-Gumaei, K., Schuba, K., Friesen, A., Heymann, S., Pieper, C., Pethig, F., & Schriegel, S. (2018). A survey of internet of things and big data integrated solutions for industrie 4.0. IEEE 23rd International Conference on Emerging Technologies and Factory Automation, 23(1), 1417-1424.

Alrabghi, A., Tiwari, A., & Savill, M. (2017). Simulation-based optimisation of maintenance systems: Industrial case studies. Journal of Manufacturing Systems, 44, 191-206.

Adu-Amankwa, K., Attia, A. K., Janardhanan, M. N., & Patel, I. (2019). A predictive maintenance cost model for CNC SMEs in the era of industry 4.0. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3567-3587. Retrieved June 10, 2020, from https://doi.org/10.1007/s00170-019-04094-2.

Antosz, K., & Ratnayake, R. C. (2019). Spare parts’ criticality assessment and prioritization for enhancing manufacturing systems’ availability and reliability. Journal of Manufacturing Systems, 50, 212-225.

Arnold, C., Kiel, D., & Voigt, K. I. (2016). How the industrial internet of things changes business models in different manufacturing industries. International Journal of Innovation Management, 20(08), 1640015.

Associação Brasileira de Normas Técnicas. (1994). NBR 5462 - Confiabilidade e mantenabilidade. São Paulo: ABNT.

Babiceanu, R. F., & Seker, R. (2016). Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Computers in Industry, 81, 128-137.

Barros, J. F., & Lima, G. (2011). A gestão da manutenção no plano estratégico dos empreendimentos industriais. Congresso Nacional de Excelência em Gestão, 7.

Bengtsson, M., & Lundström, G. (2018). On the importance of combining “the New” with “the Old”— one important prerequisite for maintenance in Industry 4.0. Procedia Manufacturing, 25, 118-125.

Blanchard, B. (2003). Logistics engineering and management (6a. ed.). Englewwod Cliffs: Prentice Hall.

Branco Filho, G. (2008). Organização, o planejamento e o controle da manutenção. Rio de Janeiro: Ciência Moderna.

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44.

Campos, V. F. (2013). Gerenciamento da Rotina do trabalho do dia a dia. 9. Ed. Nova Lima: FALCONI Editora.

Changyou, L., Haiyang, L., Song, G., Yimin, Z., & Zhenyuan, L. (2014). Gradual Reliability Sensitivity Analysis of Mechanical Part Considering Preventive Maintenance. Advances in Mechanical Engineering.

Choi, S. S., Kang, G., Jung, K., Kulvatunyou, B. & Morris, K.C. (2016). Applications of the factory design and improvement reference activity model. International Conference on Advances in Production Management Systems (APMS), Iguassu Falls, Brazil. Retrieved June 10, 2020, from https://hal.inria.fr/hal-01615741/document.

del Amo, I. F., Erkoyuncu, J. A., Roy, R., & Wilding, S. (2018). Augmented Reality in Maintenance: An information-centred design framework. Procedia Manufacturing, 19, 148-155.

Dillon, T., Wu, C., & Chang, E. (2010). Cloud Computing: Issues and Challenges. Proceedings. International Conference on Advanced Information Networking and Applications, AINA, 27-33.

Ding, S. H., & Kamaruddin, S. (2015). Maintenance policy optimization - literature review and directions. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1263-1283.

European Parliament. (2015). Industry 4.0 Digitalisation for productivity and growth. Retrieved June 10, 2020, from http://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568337/ EPRS_BRI (2015)568337_ EN.pdf.

Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible Industry 4.0: a scenario-based approach to learning for the future of production. Procedia Cirp, 54(1), 13-18.

Gil, A. C. (2010). Métodos e técnicas de pesquisa social. (8a. ed.). São Paulo: Atlas.

Guizzi, G., Falcone, D., & De Felice, F. (2019). An integrated and parametric simulation model to improve production and maintenance processes: towards a digital factory performance. Computers & Industrial Engineering, 137, 106052.

He, Y., Gu, C., Chen, Z., & Han, X. (2017). Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis. International Journal of Production Research, 55(19), 5841-5862.

He, Y., Han, X., Gu, C., & Chen, Z. (2018). Cost-oriented predictive maintenance based on mission reliability state for cyber manufacturing systems. Advances in Mechanical Engineering, 10(1), 1-15. . Retrieved June 10, 2020, from https://journals.sagepub.com/doi/pdf/10.1177/1687814017751467.

Herrmann, C., Schmidt, C., Kurle, D., Blume, S., & Thiede, S. (2014). Sustainability in manufacturing and factories of the future. International Journal of Precision Engineering and Manufacturing-Green Technology, 1, 283–292.

Hirsch-Kreinsen, H. (2014). Smart production systems: a new type of industrial process innovation. DRUID Society Conference.

Jasiulewicz-Kaczmarek, M., & Gola, A. (2019). Maintenance 4.0 Technologies for Sustainable Manufacturing-an Overview. IFAC-PapersOnLine, 52(10), 91-96.

Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0 - based manufacturing systems. Manufacturing Letters, 3, 18-23.

Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 16, 3–8.

Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Advances in Manufacturing, 5(4), 377-387.

Lopes, I., Senra, P., Vilarinho, S., Sá, V., Teixeira, C., Lopes, J., Alves, A., Oliveira, J., & Figueiredo, M. (2016). Requirements specification of a computerized maintenance management system–a case study. Procedia Cirp, 52(1), 268-273.

Mirshawka, V. & Olmedo, N. L. (1993). Manutenção – combate aos custos da não eficácia – a vez do Brasil. São Paulo: Makron Books.

Mobley, R. K. (2002). An introduction to predictive maintenance. São Paulo: Elsevier.

Moraes, E. C., & Lepikson, H. A. (2017). Industry 4.0 and its impacts on society. Proceedings of the International Conference on Industrial Engineering and Operations Management, 25-26.

Mourtzis, D., & Vlachou, E. (2018). A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance. Journal of manufacturing systems, 47, 179-198.

Mueller, E., Chen, X. L., & Riedel, R. (2017). Challenges and requirements for the application of industry 4.0: a special insight with the usage of cyber-physical system. Chinese Journal of Mechanical Engineering, 30(5), 1050-1057.

Pinto, J. P. (2013). Manutenção lean. Lisboa: Lidel.

Rødseth, H., Schjølberg, P., & Marhaug, A. (2017). Deep digital maintenance. Advances in Manufacturing, 5(4), 299-310.

Romero-Torres, S., Moyne, J., & Kidambi, M. (2017). Towards Pharma 4.0; leveraging lessons and innovation from Silicon Valley. American Pharmaceutical Review, 5, 132-141.

Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016). Continuous maintenance and the future - foundations and technological challenges. Cirp Annals, 65(2), 667-688.

Slack, N., Brandon-Jones, & Johnston, R. (2018). Administração da produção. (8a. ed.) São Paulo: Atlas.

Silva, S. (2002). Comunicação organizacional em empresas de construção civil sob a ótica do planejamento estratégico. 157 f. Curitiba, 2002 (Dissertação) (Mestrado em Construção Civil–Programa de Pós-Graduação em Construção Civil, Universidade Federal do Paraná, Curitiba).

Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia Cirp, 40, 536-541.

Suarez-Warden, F, Mendıvil, EG, Ramırez, AF, Garcıa-Lumbreras, S., (2015), Profit Model for Incorporating AR Technology in Assembly Tasks of Aeronautical Maintenance. Procedia Computer Science,75, 113–122.

Tedeschi, S., Rodrigues, D., Emmanouilidis, C., Erkoyuncu, J., Roy, R., & Starr, A. (2018). A cost estimation approach for IoT modular architectures implementation in legacy systems. Procedia Manufacturing, 19, 103-110.

Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039-2047.

Xia, T., Xi, L., Lee, J., & Zhou, X. (2011). Optimal CBPM policy considering maintenance effects and environmental condition. International Journal of Advanced Manufacturing Technology. 56. 1181-1193.

Zhong, R.Y., Wang, L., & Xu, X. (2017). An IoT-enabled Realtime Machine Status Monitoring Approach for Cloud Manufacturing, Procedia CIRP, 63, 709–714.

Published

2023-03-22

How to Cite

Delecrodio, T. A. V., Neves, G. R., & Lucato, W. C. (2023). Asset maintenance in the context of industry 4.0: a bibliometric and systematic analysis. Exacta, 21(1), 23–52. https://doi.org/10.5585/exactaep.2021.17589

Most read articles by the same author(s)